Lovell Peter V, Clayton David F, Replogle Kirstin L, Mello Claudio V
Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America.
PLoS One. 2008;3(10):e3440. doi: 10.1371/journal.pone.0003440. Epub 2008 Oct 20.
Vocal learning is a rare and complex behavioral trait that serves as a basis for the acquisition of human spoken language. In songbirds, vocal learning and production depend on a set of specialized brain nuclei known as the song system.
METHODOLOGY/PRINCIPAL FINDINGS: Using high-throughput functional genomics we have identified approximately 200 novel molecular markers of adult zebra finch HVC, a key node of the song system. These markers clearly differentiate HVC from the general pallial region to which HVC belongs, and thus represent molecular specializations of this song nucleus. Bioinformatics analysis reveals that several major neuronal cell functions and specific biochemical pathways are the targets of transcriptional regulation in HVC, including: 1) cell-cell and cell-substrate interactions (e.g., cadherin/catenin-mediated adherens junctions, collagen-mediated focal adhesions, and semaphorin-neuropilin/plexin axon guidance pathways); 2) cell excitability (e.g., potassium channel subfamilies, cholinergic and serotonergic receptors, neuropeptides and neuropeptide receptors); 3) signal transduction (e.g., calcium regulatory proteins, regulators of G-protein-related signaling); 4) cell proliferation/death, migration and differentiation (e.g., TGF-beta/BMP and p53 pathways); and 5) regulation of gene expression (candidate retinoid and steroid targets, modulators of chromatin/nucleolar organization). The overall direction of regulation suggest that processes related to cell stability are enhanced, whereas proliferation, growth and plasticity are largely suppressed in adult HVC, consistent with the observation that song in this songbird species is mostly stable in adulthood.
CONCLUSIONS/SIGNIFICANCE: Our study represents one of the most comprehensive molecular genetic characterizations of a brain nucleus involved in a complex learned behavior in a vertebrate. The data indicate numerous targets for pharmacological and genetic manipulations of the song system, and provide novel insights into mechanisms that might play a role in the regulation of song behavior and/or vocal learning.
发声学习是一种罕见且复杂的行为特征,是人类习得口语的基础。在鸣禽中,发声学习和发声依赖于一组被称为鸣唱系统的特殊脑核团。
方法/主要发现:利用高通量功能基因组学,我们鉴定出了成年斑胸草雀HVC(鸣唱系统的一个关键节点)的约200个新分子标记。这些标记清晰地将HVC与其所属的一般脑皮层区域区分开来,因此代表了这个鸣唱核团的分子特化。生物信息学分析表明,几个主要的神经元细胞功能和特定的生化途径是HVC转录调控的靶点,包括:1)细胞-细胞和细胞-基质相互作用(例如,钙黏蛋白/连环蛋白介导的黏附连接、胶原蛋白介导的黏着斑以及信号素-神经纤毛蛋白/丛蛋白轴突导向途径);2)细胞兴奋性(例如,钾离子通道亚家族、胆碱能和血清素能受体、神经肽和神经肽受体);3)信号转导(例如,钙调节蛋白、G蛋白相关信号的调节因子);4)细胞增殖/死亡、迁移和分化(例如,转化生长因子-β/骨形态发生蛋白和p53途径);以及5)基因表达调控(候选视黄酸和类固醇靶点、染色质/核仁组织的调节因子)。调控的总体方向表明,与细胞稳定性相关的过程得到增强,而成年HVC中的增殖、生长和可塑性在很大程度上受到抑制,这与这种鸣禽成年后鸣唱大多稳定的观察结果一致。
结论/意义:我们的研究是对脊椎动物中参与复杂学习行为的脑核团进行的最全面的分子遗传学表征之一。这些数据指出了对鸣唱系统进行药理学和遗传学操纵的众多靶点,并为可能在鸣唱行为和/或发声学习调控中起作用的机制提供了新的见解。