Phytopathology. 2005 Nov;95(11):1349-55. doi: 10.1094/PHYTO-95-1349.
ABSTRACT The role of bacterially produced salicylic acid (SA) in the induction of systemic resistance in plants by rhizobacteria is far from clear. The strong SA producer Pseudomonas fluorescens WCS374r induces resistance in radish but not in Arabidopsis thaliana, whereas application of SA leads to induction of resistance in both plant species. In this study, we compared P. fluorescens WCS374r with three other SA-producing fluorescent Pseudomonas strains, P. fluorescens WCS417r and CHA0r, and P. aeruginosa 7NSK2 for their abilities to produce SA under different growth conditions and to induce systemic resistance in A. thaliana against bacterial speck, caused by P. syringae pv. tomato. All strains produced SA in vitro, varying from 5 fg cell(-1) for WCS417r to >25 fg cell(-1) for WCS374r. Addition of 200 muM FeCl(3) to standard succinate medium abolished SA production in all strains. Whereas the incubation temperature did not affect SA production by WCS417r and 7NSK2, strains WCS374r and CHA0r produced more SA when grown at 33 instead of 28 degrees C. WCS417r, CHA0r, and 7NSK2 induced systemic resistance apparently associated with their ability to produce SA, but WCS374r did not. Conversely, a mutant of 7NSK2 unable to produce SA still triggered induced systemic resistance (ISR). The possible involvement of SA in the induction of resistance was evaluated using SA-nonaccumulating transgenic NahG plants. Strains WCS417r, CHA0r, and 7NSK2 induced resistance in NahG Arabidopsis. Also, WCS374r, when grown at 33 or 36 degrees C, triggered ISR in these plants, but not in ethylene-insensitive ein2 or in non-plant pathogenesis- related protein-expressing npr1 mutant plants, irrespective of the growth temperature of the bacteria. These results demonstrate that, whereas WCS374r can be manipulated to trigger ISR in Arabidopsis, SA is not the primary determinant for the induction of systemic resistance against bacterial speck disease by this bacterium. Also, for the other SAproducing strains used in this study, bacterial determinants other than SA must be responsible for inducing resistance.
摘要 目前,关于根际细菌产生的水杨酸(SA)在诱导植物系统抗性中的作用还远不清楚。强 SA 产生菌荧光假单胞菌 WCS374r 能诱导萝卜产生抗性,但不能诱导拟南芥产生抗性,而 SA 的应用则能诱导这两种植物产生抗性。在本研究中,我们比较了荧光假单胞菌 WCS374r 与其他 3 种产生 SA 的荧光假单胞菌菌株(WCS417r 和 CHA0r 以及 P. aeruginosa 7NSK2)在不同生长条件下产生 SA 的能力,以及它们诱导拟南芥对由丁香假单胞菌 pv.番茄引起的细菌性斑点病产生系统抗性的能力。所有菌株在体外均产生 SA,WCS417r 为 5 fg 细胞(-1),而 WCS374r 则>25 fg 细胞(-1)。向标准琥珀酸盐培养基中添加 200 μM FeCl(3)可使所有菌株的 SA 产量均减少。WCS417r 和 7NSK2 的培养温度不影响 SA 的产生,但菌株 WCS374r 和 CHA0r 在 33°C 下生长时产生的 SA 更多。WCS417r、CHA0r 和 7NSK2 诱导产生了明显与 SA 产生能力相关的系统抗性,但 WCS374r 却没有。相反,不能产生 SA 的 7NSK2 突变体仍能引发诱导的系统抗性(ISR)。通过使用不积累 SA 的 NahG 转基因拟南芥来评估 SA 对诱导抗性的可能参与情况。WCS417r、CHA0r 和 7NSK2 诱导 NahG 拟南芥产生抗性。此外,当在 33°C 或 36°C 下培养 WCS374r 时,即使在细菌生长温度下,它也能在这些植物中引发 ISR,但不能在乙烯不敏感的 ein2 或不表达非植物病程相关蛋白的 npr1 突变体植物中引发 ISR。这些结果表明,虽然可以操纵 WCS374r 来触发拟南芥中的 ISR,但 SA 并不是该细菌诱导细菌性斑点病系统抗性的主要决定因素。此外,对于本研究中使用的其他产生 SA 的菌株,诱导抗性的细菌决定因素必须不同于 SA。