Suppr超能文献

微生物学中用于解释大规模蛋白质谱分析的工具。

Tools for interpreting large-scale protein profiling in microbiology.

作者信息

Hendrickson E L, Lamont R J, Hackett M

机构信息

Departments of Chemical Engineering, Universityof Washington, Box 355014, Seattle, WA 98195, USA.

出版信息

J Dent Res. 2008 Nov;87(11):1004-15. doi: 10.1177/154405910808701113.

Abstract

Quantitative proteomic analysis of microbial systems generates large datasets that can be difficult and time-consuming to interpret. Fortunately, many of the data display and gene-clustering tools developed to analyze large transcriptome microarray datasets are also applicable to proteomes. Plots of abundance ratio vs. total signal or spectral counts can highlight regions of random error and putative change. Displaying data in the physical order of the genes in the genome sequence can highlight potential operons. At a basic level of transcriptional organization, identifying operons can give insights into regulatory pathways as well as provide corroborating evidence for proteomic results. Classification and clustering algorithms can group proteins together by their abundance changes under different conditions, helping to identify interesting expression patterns, but often work poorly with noisy data such as typically generated in a large-scale proteomic analysis. Biological interpretation can be aided more directly by overlaying differential protein abundance data onto metabolic pathways, indicating pathways with altered activities. More broadly, ontology tools detect altered levels of protein abundance for different metabolic pathways, molecular functions, and cellular localizations. In practice, pathway analysis and ontology are limited by the level of database curation associated with the organism of interest.

摘要

微生物系统的定量蛋白质组学分析会生成庞大的数据集,这些数据集可能难以解读且耗时。幸运的是,许多为分析大型转录组微阵列数据集而开发的数据显示和基因聚类工具也适用于蛋白质组。丰度比与总信号或光谱计数的图可以突出随机误差和假定变化的区域。按照基因组序列中基因的物理顺序显示数据可以突出潜在的操纵子。在转录组织的基本层面上,识别操纵子可以深入了解调控途径,并为蛋白质组学结果提供确证。分类和聚类算法可以根据蛋白质在不同条件下的丰度变化将它们分组在一起,有助于识别有趣的表达模式,但对于大规模蛋白质组学分析中通常产生的噪声数据往往效果不佳。通过将差异蛋白质丰度数据叠加到代谢途径上,可以更直接地辅助生物学解释,这表明了活性发生改变的途径。更广泛地说,本体工具可以检测不同代谢途径、分子功能和细胞定位的蛋白质丰度变化水平。实际上,途径分析和本体受到与感兴趣生物体相关的数据库编目水平的限制。

相似文献

1
Tools for interpreting large-scale protein profiling in microbiology.
J Dent Res. 2008 Nov;87(11):1004-15. doi: 10.1177/154405910808701113.
4
ProteomeWeb: a web-based interface for the display and interrogation of proteomes.
Proteomics. 2003 May;3(5):584-600. doi: 10.1002/pmic.200300396.
5
Quantitative proteomics of intracellular Porphyromonas gingivalis.
Proteomics. 2007 Dec;7(23):4323-37. doi: 10.1002/pmic.200700543.
6
Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.
World J Gastroenterol. 2017 Nov 7;23(41):7369-7386. doi: 10.3748/wjg.v23.i41.7369.
7
Comprehensive transcriptome analysis of the periodontopathogenic bacterium Porphyromonas gingivalis W83.
J Bacteriol. 2012 Jan;194(1):100-14. doi: 10.1128/JB.06385-11. Epub 2011 Oct 28.
8
Clustering and Network Analysis of Reverse Phase Protein Array Data.
Methods Mol Biol. 2017;1606:171-191. doi: 10.1007/978-1-4939-6990-6_12.
9
GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and proteomic data.
Bioinformatics. 2003 Nov 1;19(16):2158-60. doi: 10.1093/bioinformatics/btg291.

引用本文的文献

1
Viscoelastic Properties of Human Facial Skin and Comparisons with Facial Prosthetic Elastomers.
Materials (Basel). 2023 Feb 28;16(5):2023. doi: 10.3390/ma16052023.
2
Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems.
Mol Cell Proteomics. 2013 May;12(5):1180-91. doi: 10.1074/mcp.M112.018846. Epub 2013 Jan 23.
3
Emerging vaccine informatics.
J Biomed Biotechnol. 2010;2010:218590. doi: 10.1155/2010/218590. Epub 2011 Jun 15.
4
The representation of heart development in the gene ontology.
Dev Biol. 2011 Jun 1;354(1):9-17. doi: 10.1016/j.ydbio.2011.03.011. Epub 2011 Mar 17.
5
Cellular and bacterial profiles associated with oral epithelium-microbiota interactions.
Periodontol 2000. 2010 Feb;52(1):207-17. doi: 10.1111/j.1600-0757.2009.00322.x.
7
Adaptation of Porphyromonas gingivalis to microaerophilic conditions involves increased consumption of formate and reduced utilization of lactate.
Microbiology (Reading). 2009 Nov;155(Pt 11):3758-3774. doi: 10.1099/mic.0.027953-0. Epub 2009 Aug 14.
8
Proteomics of Porphyromonas gingivalis within a model oral microbial community.
BMC Microbiol. 2009 May 19;9:98. doi: 10.1186/1471-2180-9-98.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
2
Science, marketing and wishful thinking in quantitative proteomics.
Proteomics. 2008 Nov;8(22):4618-23. doi: 10.1002/pmic.200800358.
3
Significance analysis of spectral count data in label-free shotgun proteomics.
Mol Cell Proteomics. 2008 Dec;7(12):2373-85. doi: 10.1074/mcp.M800203-MCP200. Epub 2008 Jul 20.
5
Assigning significance to peptides identified by tandem mass spectrometry using decoy databases.
J Proteome Res. 2008 Jan;7(1):29-34. doi: 10.1021/pr700600n. Epub 2007 Dec 8.
6
Quantitative proteomics of intracellular Porphyromonas gingivalis.
Proteomics. 2007 Dec;7(23):4323-37. doi: 10.1002/pmic.200700543.
7
Protein abundance ratios for global studies of prokaryotes.
Proteomics. 2007 Aug;7(16):2904-19. doi: 10.1002/pmic.200700267.
8
DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W169-75. doi: 10.1093/nar/gkm415. Epub 2007 Jun 18.
9
Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea.
Proc Natl Acad Sci U S A. 2007 May 22;104(21):8930-4. doi: 10.1073/pnas.0701157104. Epub 2007 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验