Suppr超能文献

Gαq 通过降低 Gαs 蛋白丰度来减少 cAMP 的产生。

Galphaq reduces cAMP production by decreasing Galphas protein abundance.

作者信息

Tang Tong, Gao Mei Hua, Miyanohara Atsushi, Hammond H Kirk

机构信息

Department of Medicine , University of California San Diego, La Jolla, California 92039, USA; VA San Diego Healthcare System (111A), 3350 La Jolla Village Drive, San Diego, California 92161, USA.

Department of Medicine , University of California San Diego, La Jolla, California 92039, USA; VA San Diego Healthcare System (111A), 3350 La Jolla Village Drive, San Diego, California 92161, USA.

出版信息

Biochem Biophys Res Commun. 2008 Dec 12;377(2):679-684. doi: 10.1016/j.bbrc.2008.10.054. Epub 2008 Oct 21.

Abstract

The heterotrimeric guanine nucleotide-binding protein Galphaq transduces signals from heptahelical transmembrane receptors (e.g., alpha(1)-adrenergic, endothelin 1A, and angiotensin II) to stimulate generation of inositol-1,4,5-trisphosphate and diacylglycerol. In addition, Galphaq decreases cAMP production, through unknown mechanisms, and thus affects physiological responsiveness of cardiac myocytes and other cells. Here, we provide evidence that Galphaq expression increases Galphas ubiquitination, decreases Galphas protein content, and impairs basal and beta(1)-adrenergic receptor-stimulated cAMP production. These biochemical and functional changes are associated with Akt activation. Expression of constitutively active Akt also decreases Galphas protein content and inhibits basal and beta(1)-adrenergic receptor-stimulated cAMP production. Akt knockdown inhibits Galphaq-induced reduction of Galphas protein. In addition, MDM2, an E3 ubiquitin ligase, binds Galphas and promotes its degradation. Therefore, increased expression of Galphaq decreases cAMP production through Akt-mediated Galphas protein ubiquitination and proteasomal degradation.

摘要

异三聚体鸟嘌呤核苷酸结合蛋白Gαq可将来自七螺旋跨膜受体(如α1 -肾上腺素能受体、内皮素1A受体和血管紧张素II受体)的信号进行转导,以刺激肌醇-1,4,5 -三磷酸和二酰基甘油的生成。此外,Gαq通过未知机制降低环磷酸腺苷(cAMP)的产生,从而影响心肌细胞和其他细胞的生理反应性。在此,我们提供证据表明,Gαq的表达增加了Gαs的泛素化,降低了Gαs的蛋白质含量,并损害了基础状态下以及β1 -肾上腺素能受体刺激后的cAMP产生。这些生化和功能变化与Akt激活相关。组成型活性Akt的表达也降低了Gαs的蛋白质含量,并抑制了基础状态下以及β1 -肾上腺素能受体刺激后的cAMP产生。敲低Akt可抑制Gαq诱导的Gαs蛋白减少。此外,E3泛素连接酶MDM2与Gαs结合并促进其降解。因此,Gαq表达增加通过Akt介导的Gαs蛋白泛素化和蛋白酶体降解降低了cAMP的产生。

相似文献

1
Galphaq reduces cAMP production by decreasing Galphas protein abundance.
Biochem Biophys Res Commun. 2008 Dec 12;377(2):679-684. doi: 10.1016/j.bbrc.2008.10.054. Epub 2008 Oct 21.
4
Structural Elements in the Gαs and Gαq C Termini That Mediate Selective G Protein-coupled Receptor (GPCR) Signaling.
J Biol Chem. 2016 Aug 19;291(34):17929-40. doi: 10.1074/jbc.M116.735720. Epub 2016 Jun 21.
5
Disruption of β-catenin binding to parathyroid hormone (PTH) receptor inhibits PTH-stimulated ERK1/2 activation.
Biochem Biophys Res Commun. 2015 Aug 14;464(1):27-32. doi: 10.1016/j.bbrc.2015.05.082. Epub 2015 Jun 3.
6
DMT efficiently inhibits hepatic gluconeogenesis by regulating the Gαq signaling pathway.
J Mol Endocrinol. 2017 Aug;59(2):151-169. doi: 10.1530/JME-17-0121. Epub 2017 Jun 21.
7
Priming GPCR signaling through the synergistic effect of two G proteins.
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3756-3761. doi: 10.1073/pnas.1617232114. Epub 2017 Mar 21.
8
Ubiquitination of the heterotrimeric G protein α subunits Gαi2 and Gαq is prevented by the guanine nucleotide exchange factor Ric-8A.
Biochem Biophys Res Commun. 2013 Jun 7;435(3):414-9. doi: 10.1016/j.bbrc.2013.04.103. Epub 2013 May 9.
9
Targeted activation of conventional and novel protein kinases C through differential translocation patterns.
Mol Cell Biol. 2014 Jul;34(13):2370-81. doi: 10.1128/MCB.00040-14. Epub 2014 Apr 14.
10
On the selectivity of the Gαq inhibitor UBO-QIC: A comparison with the Gαi inhibitor pertussis toxin.
Biochem Pharmacol. 2016 May 1;107:59-66. doi: 10.1016/j.bcp.2016.03.003. Epub 2016 Mar 5.

引用本文的文献

2
A dynamic interface between ubiquitylation and cAMP signaling.
Front Pharmacol. 2015 Sep 4;6:177. doi: 10.3389/fphar.2015.00177. eCollection 2015.
3
How much do we know about the coupling of G-proteins to serotonin receptors?
Mol Brain. 2014 Jul 10;7:49. doi: 10.1186/s13041-014-0049-y.
4
HIV-1 Nef impairs heterotrimeric G-protein signaling by targeting Gα(i2) for degradation through ubiquitination.
J Biol Chem. 2012 Nov 30;287(49):41481-98. doi: 10.1074/jbc.M112.361782. Epub 2012 Oct 15.
5
Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation.
Cell Death Differ. 2012 Aug;19(8):1381-9. doi: 10.1038/cdd.2012.15. Epub 2012 Mar 2.

本文引用的文献

1
Characterization of the GNAQ promoter and association of increased Gq expression with cardiac hypertrophy in humans.
Eur Heart J. 2008 Apr;29(7):888-97. doi: 10.1093/eurheartj/ehm618. Epub 2008 Mar 6.
2
3
Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2.
EMBO J. 2006 Oct 18;25(20):4752-62. doi: 10.1038/sj.emboj.7601351. Epub 2006 Sep 28.
4
Galphaq expression activates EGFR and induces Akt mediated cardiomyocyte survival: dissociation from Galphaq mediated hypertrophy.
J Mol Cell Cardiol. 2006 May;40(5):597-604. doi: 10.1016/j.yjmcc.2005.12.003. Epub 2006 Feb 8.
5
Accessory proteins for G proteins: partners in signaling.
Annu Rev Pharmacol Toxicol. 2006;46:151-87. doi: 10.1146/annurev.pharmtox.46.120604.141115.
6
Ubiquitylation and cell signaling.
EMBO J. 2005 Oct 5;24(19):3353-9. doi: 10.1038/sj.emboj.7600808. Epub 2005 Sep 8.
8
Adenylate cyclase regulation via proteasome-mediated modulation of Galphas levels.
Cell Signal. 2004 Nov;16(11):1229-37. doi: 10.1016/j.cellsig.2004.03.012.
9
Adenylyl cyclase type VI corrects cardiac sarcoplasmic reticulum calcium uptake defects in cardiomyopathy.
Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H1906-12. doi: 10.1152/ajpheart.00356.2004. Epub 2004 Jul 8.
10
Translating G protein subunit diversity into functional specificity.
Curr Opin Cell Biol. 2004 Apr;16(2):206-9. doi: 10.1016/j.ceb.2004.02.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验