Suppr超能文献

DMT 通过调节 Gαq 信号通路有效抑制肝糖异生。

DMT efficiently inhibits hepatic gluconeogenesis by regulating the Gαq signaling pathway.

机构信息

Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.

University of Chinese Academy of SciencesBeijing, China.

出版信息

J Mol Endocrinol. 2017 Aug;59(2):151-169. doi: 10.1530/JME-17-0121. Epub 2017 Jun 21.

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated pathogenesis and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. G protein-coupled receptors (GPCRs) are classified as distinct families by heterotrimeric G proteins, primarily including Gαs, Gαi and Gαq. Gαs-coupled GPCRs function potently in the regulation of hepatic gluconeogenesis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and Gαi-coupled GPCRs exhibit inhibitory effect on adenylyl cyclase and reduce intracellular cAMP level. However, little is known about the regulation of Gαq-coupled GPCRs in hepatic gluconeogenesis. Here, small-molecule 2-(2,4-dimethoxy-3-methylphenyl)-7-(thiophen-2-yl)-9-(trifluoromethyl)-2,3-dihydropyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4()-one (DMT) was determined to suppress hepatic glucose production and reduce mRNA levels of gluconeogenic genes. Treatment of DMT in mice decreased fasting blood glucose and hemoglobin A1C (HbA1c) levels, while improved glucose tolerance and pyruvate tolerance. Mechanism study demonstrated that DMT-inhibited gluconeogenesis by regulating the Gαq/phospholipase C (PLC)/inositol-1,4,5-triphosphate receptor (IP3R)-mediated calcium (Ca)/calmodulin (CaM)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box protein O1 (FOXO1) signaling pathway. To our knowledge, DMT might be the first reported small molecule able to suppress hepatic gluconeogenesis by regulating Gαq signaling, and our current work has also highlighted the potential of DMT in the treatment of T2DM.

摘要

2 型糖尿病(T2DM)是一种慢性代谢性疾病,发病机制复杂,抑制糖异生是抗糖尿病药物发现的一种很有前途的策略。G 蛋白偶联受体(GPCRs)根据异三聚体 G 蛋白分为不同的家族,主要包括 Gαs、Gαi 和 Gαq。Gαs 偶联的 GPCR 通过激活环腺苷酸(cAMP)/蛋白激酶 A(PKA)途径在调节肝糖异生方面发挥强大作用,而 Gαi 偶联的 GPCR 对腺苷酸环化酶表现出抑制作用,并降低细胞内 cAMP 水平。然而,关于 Gαq 偶联的 GPCR 在肝糖异生中的调节作用知之甚少。在这里,小分子 2-(2,4-二甲氧基-3-甲基苯基)-7-(噻吩-2-基)-9-(三氟甲基)-2,3-二氢吡啶并[3',2':4,5]噻吩[3,2-d]嘧啶-4(-)-酮(DMT)被确定可抑制肝糖生成并降低糖异生基因的 mRNA 水平。在 小鼠中给予 DMT 治疗可降低空腹血糖和血红蛋白 A1C(HbA1c)水平,同时改善葡萄糖耐量和丙酮酸耐量。机制研究表明,DMT 通过调节 Gαq/磷脂酶 C(PLC)/肌醇-1,4,5-三磷酸受体(IP3R)介导的钙(Ca)/钙调蛋白(CaM)/磷酸肌醇-4,5-二磷酸 3-激酶(PI3K)/蛋白激酶 B(AKT)/叉头框蛋白 O1(FOXO1)信号通路来抑制糖异生。据我们所知,DMT 可能是第一个报道的能够通过调节 Gαq 信号来抑制肝糖异生的小分子,我们目前的工作也突出了 DMT 在治疗 2 型糖尿病方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验