Merkens Hedda, Kappl Reinhard, Jakob Roman P, Schmid Franz X, Fetzner Susanne
Institut fur Molekulare Mikrobiologie und Biotechnologie, Westfalische Wilhelms-Universitat Munster, 48149 Munster, Germany.
Biochemistry. 2008 Nov 18;47(46):12185-96. doi: 10.1021/bi801398x. Epub 2008 Oct 25.
Quercetinase (QueD) of Streptomyces sp. FLA is an enzyme of the monocupin family and catalyzes the 2,4-dioxygenolytic cleavage of the flavonol quercetin. After expression of the queD gene in Escherichia coli, high specific QueD activity was found in crude cell extracts when the growth medium was supplemented with NiCl 2 or CoCl 2, but not when Mn (2+), Fe (2+), Cu (2+), or Zn (2+) was added. The metal occupancy of Ni- and Co-QueD purified from these cells was </=50%, presumably due to strong overproduction of QueD in E. coli. Circular dichroism spectroscopy indicated the same folded structure with a high content of beta-sheet for the Ni and Co protein. The apparent kinetic constants for quercetin of Ni-QueD ( k cat = 40.1 s (-1), and K m = 5.75 microM) and Co-QueD ( k cat = 7.6 s (-1), and K m = 0.96 muM) indicate similar catalytic efficiencies; however, the approximately 5-fold lower apparent K m value of Ni-QueD for dioxygen suggests that the nickel enzyme performs better under physiological conditions. The pH dependence of k cat,app indicates that an ionizable group with a p K a near 6.8 has to be deprotonated for catalysis. Electron paramagnetic resonance spectra of resting Co-QueD are indicative of a high-spin ( S = (3)/ 2) Co (2+) species in a tetrahedral or trigonal-bipyramidal coordination geometry. Anoxic binding of quercetin to QueD drastically altered the hyperfine pattern at g approximately 6 without changing the valence state of the Co(II) center and elicited a hypsochromic shift of UV-vis absorption band I of quercetin. On the basis of spectroscopic data, and considering the organic chemistry of flavonols, a nonredox role of the metal center in catalysis is discussed.
链霉菌属FLA的槲皮素酶(QueD)是单铜蛋白家族的一种酶,催化黄酮醇槲皮素的2,4-二氧解裂反应。在大肠杆菌中表达queD基因后,当生长培养基中添加NiCl₂或CoCl₂时,在粗细胞提取物中发现了高特异性的QueD活性,而添加Mn(2+)、Fe(2+)、Cu(2+)或Zn(2+)时则未发现。从这些细胞中纯化得到的Ni-QueD和Co-QueD的金属占有率≤50%,这可能是由于QueD在大肠杆菌中大量过量表达所致。圆二色光谱表明Ni和Co蛋白具有相同的折叠结构,且β-折叠含量较高。Ni-QueD(kcat = 40.1 s⁻¹,Km = 5.75 μM)和Co-QueD(kcat = 7.6 s⁻¹,Km = 0.96 μM)对槲皮素的表观动力学常数表明它们具有相似的催化效率;然而,Ni-QueD对双氧的表观Km值低约5倍,这表明镍酶在生理条件下表现更好。kcat,app对pH的依赖性表明,催化作用需要一个pKa接近6.8的可电离基团去质子化。静止的Co-QueD的电子顺磁共振光谱表明,在四面体或三角双锥配位几何结构中存在高自旋(S = ³/₂)的Co(2+)物种。槲皮素与QueD的缺氧结合在g约为6时极大地改变了超精细模式,而不改变Co(II)中心的价态,并引发了槲皮素紫外可见吸收带I的蓝移。基于光谱数据,并考虑黄酮醇的有机化学性质,讨论了金属中心在催化中的非氧化还原作用。