Gosselin Frédéric, Lebreton Jean-Dominique
Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, CEFE, Montpellier Cedex 5, France.
J Theor Biol. 2009 Jan 21;256(2):157-63. doi: 10.1016/j.jtbi.2008.09.018. Epub 2008 Oct 7.
The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133-137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.
其中存在一个个体死亡后的最大年龄。德米特里厄斯[1972年。关于无限种群矩阵。数学生物科学。13,133 - 137]将该理论扩展到无限莱斯利矩阵,其中个体的寿命可能是无限的。然而,德米特里厄斯不得不假设每个时间步的生存概率随年龄趋于0。我们在此将稳定种群理论的应用条件推广到无限莱斯利矩阵模型,并将这些结果应用于两个例子,包括有或没有衰老的情况。