Suppr超能文献

肌球蛋白结合蛋白C基序对通透化大鼠小梁功能效应的作用

Contribution of the myosin binding protein C motif to functional effects in permeabilized rat trabeculae.

作者信息

Razumova Maria V, Bezold Kristina L, Tu An-Yue, Regnier Michael, Harris Samantha P

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.

出版信息

J Gen Physiol. 2008 Nov;132(5):575-85. doi: 10.1085/jgp.200810013.

Abstract

Myosin binding protein C (MyBP-C) is a thick-filament protein that limits cross-bridge cycling rates and reduces myocyte power output. To investigate mechanisms by which MyBP-C affects contraction, we assessed effects of recombinant N-terminal domains of cardiac MyBP-C (cMyBP-C) on contractile properties of permeabilized rat cardiac trabeculae. Here, we show that N-terminal fragments of cMyBP-C that contained the first three immunoglobulin domains of cMyBP-C (i.e., C0, C1, and C2) plus the unique linker sequence termed the MyBP-C "motif" or "m-domain" increased Ca(2+) sensitivity of tension and increased rates of tension redevelopment (i.e., k(tr)) at submaximal levels of Ca(2+). At concentrations > or =20 microM, recombinant proteins also activated force in the absence of Ca(2+) and inhibited maximum Ca(2+)-activated force. Recombinant proteins that lacked the combination of C1 and the motif did not affect contractile properties. These results suggest that the C1 domain plus the motif constitute a functional unit of MyBP-C that can activate the thin filament.

摘要

肌球蛋白结合蛋白C(MyBP-C)是一种粗肌丝蛋白,它会限制横桥循环速率并降低心肌细胞的功率输出。为了研究MyBP-C影响收缩的机制,我们评估了心脏MyBP-C(cMyBP-C)重组N端结构域对通透大鼠心脏小梁收缩特性的影响。在此,我们表明,cMyBP-C的N端片段包含cMyBP-C的前三个免疫球蛋白结构域(即C0、C1和C2)以及称为MyBP-C“基序”或“m结构域”的独特连接序列,在亚最大Ca(2+)水平下增加了张力的Ca(2+)敏感性并提高了张力恢复速率(即k(tr))。在浓度≥20 microM时,重组蛋白在无Ca(2+)的情况下也能激活力量并抑制最大Ca(2+)激活的力量。缺乏C1和基序组合的重组蛋白不影响收缩特性。这些结果表明,C1结构域加上基序构成了MyBP-C的一个功能单元,该功能单元可以激活细肌丝。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce2/2571974/aaf5eceb69af/jgp1320575f01.jpg

相似文献

2
Effects of the N-terminal domains of myosin binding protein-C in an in vitro motility assay: Evidence for long-lived cross-bridges.
J Biol Chem. 2006 Nov 24;281(47):35846-54. doi: 10.1074/jbc.M606949200. Epub 2006 Oct 1.
3
Activation of myocardial contraction by the N-terminal domains of myosin binding protein-C.
Circ Res. 2006 May 26;98(10):1290-8. doi: 10.1161/01.RES.0000222059.54917.ef. Epub 2006 Apr 13.
4
C0 and C1 N-terminal Ig domains of myosin binding protein C exert different effects on thin filament activation.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1558-63. doi: 10.1073/pnas.1518891113. Epub 2016 Feb 1.
5
Effect of cardiac myosin-binding protein C on stability of the thick filament.
J Mol Cell Cardiol. 2004 Oct;37(4):823-35. doi: 10.1016/j.yjmcc.2004.05.023.
6
Ablation of myosin-binding protein-C accelerates force development in mouse myocardium.
Biophys J. 2006 Jun 1;90(11):4119-27. doi: 10.1529/biophysj.105.078147. Epub 2006 Mar 2.
7
Determination of the critical residues responsible for cardiac myosin binding protein C's interactions.
J Mol Cell Cardiol. 2012 Dec;53(6):838-47. doi: 10.1016/j.yjmcc.2012.08.028. Epub 2012 Sep 11.
8
Normal cardiac contraction in mice lacking the proline-alanine rich region and C1 domain of cardiac myosin binding protein C.
J Mol Cell Cardiol. 2015 Nov;88:124-32. doi: 10.1016/j.yjmcc.2015.09.006. Epub 2015 Oct 8.
9
Species-specific differences in the Pro-Ala rich region of cardiac myosin binding protein-C.
J Muscle Res Cell Motil. 2009 Dec;30(7-8):303-6. doi: 10.1007/s10974-010-9207-8. Epub 2010 Mar 9.
10
Human cardiac myosin-binding protein C restricts actin structural dynamics in a cooperative and phosphorylation-sensitive manner.
J Biol Chem. 2019 Nov 1;294(44):16228-16240. doi: 10.1074/jbc.RA119.009543. Epub 2019 Sep 13.

引用本文的文献

1
cMyBP-C in hypertrophic cardiomyopathy: gene therapy and small-molecule innovations.
Front Cardiovasc Med. 2025 Feb 26;12:1550649. doi: 10.3389/fcvm.2025.1550649. eCollection 2025.
2
Autoinhibition of cMyBP-C by its middle domains.
J Mol Cell Cardiol. 2025 Mar;200:82-92. doi: 10.1016/j.yjmcc.2025.02.002. Epub 2025 Feb 7.
4
Duality in disease: How two amino acid substitutions at actin residue 312 result in opposing forms of cardiomyopathy.
J Biol Chem. 2024 Dec;300(12):107961. doi: 10.1016/j.jbc.2024.107961. Epub 2024 Nov 5.
5
Bringing into focus the central domains C3-C6 of myosin binding protein C.
Front Physiol. 2024 Feb 29;15:1370539. doi: 10.3389/fphys.2024.1370539. eCollection 2024.
6
N-Terminal Fragment of Cardiac Myosin Binding Protein-C Increases the Duration of Actin-Myosin Interaction.
Bull Exp Biol Med. 2024 Jan;176(3):324-327. doi: 10.1007/s10517-024-06017-y. Epub 2024 Feb 10.
7
Hypertrophic Cardiomyopathy versus Storage Diseases with Myocardial Involvement.
Int J Mol Sci. 2023 Aug 26;24(17):13239. doi: 10.3390/ijms241713239.
8
Actomyosin Complex.
Subcell Biochem. 2022;99:421-470. doi: 10.1007/978-3-031-00793-4_14.
9
Myofilament glycation in diabetes reduces contractility by inhibiting tropomyosin movement, is rescued by cMyBPC domains.
J Mol Cell Cardiol. 2022 Jan;162:1-9. doi: 10.1016/j.yjmcc.2021.08.012. Epub 2021 Sep 3.
10
A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice.
Biophys J. 2021 Sep 21;120(18):4079-4090. doi: 10.1016/j.bpj.2021.08.006. Epub 2021 Aug 10.

本文引用的文献

1
Protein kinase A-mediated phosphorylation of cMyBP-C increases proximity of myosin heads to actin in resting myocardium.
Circ Res. 2008 Aug 1;103(3):244-51. doi: 10.1161/CIRCRESAHA.108.178996. Epub 2008 Jul 3.
2
Cardiac myosin binding protein-C modulates actomyosin binding and kinetics in the in vitro motility assay.
J Mol Cell Cardiol. 2008 Jun;44(6):1053-1061. doi: 10.1016/j.yjmcc.2008.03.012. Epub 2008 Mar 29.
3
Small-angle X-ray scattering reveals the N-terminal domain organization of cardiac myosin binding protein C.
J Mol Biol. 2008 Apr 4;377(4):1186-99. doi: 10.1016/j.jmb.2008.01.080. Epub 2008 Feb 4.
5
Rigid conformation of an immunoglobulin domain tandem repeat in the A-band of the elastic muscle protein titin.
J Mol Biol. 2007 Aug 10;371(2):469-80. doi: 10.1016/j.jmb.2007.05.055. Epub 2007 May 25.
6
Myosin S2 is not required for effects of myosin binding protein-C on motility.
FEBS Lett. 2007 Apr 3;581(7):1501-4. doi: 10.1016/j.febslet.2007.03.007. Epub 2007 Mar 12.
7
Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin.
FASEB J. 2007 May;21(7):1383-92. doi: 10.1096/fj.06-7644com. Epub 2007 Jan 10.
8
Effects of the N-terminal domains of myosin binding protein-C in an in vitro motility assay: Evidence for long-lived cross-bridges.
J Biol Chem. 2006 Nov 24;281(47):35846-54. doi: 10.1074/jbc.M606949200. Epub 2006 Oct 1.
9
Activation of myocardial contraction by the N-terminal domains of myosin binding protein-C.
Circ Res. 2006 May 26;98(10):1290-8. doi: 10.1161/01.RES.0000222059.54917.ef. Epub 2006 Apr 13.
10
Ablation of myosin-binding protein-C accelerates force development in mouse myocardium.
Biophys J. 2006 Jun 1;90(11):4119-27. doi: 10.1529/biophysj.105.078147. Epub 2006 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验