Borek Arkadiusz, Sarewicz Marcin, Osyczka Artur
Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
Biochemistry. 2008 Nov 25;47(47):12365-70. doi: 10.1021/bi801207f.
Cytochrome bc(1), a key enzyme of biological energy conversion, generates or uses a proton motive force through the Q cycle that operates within the two chains of cofactors that embed two catalytic quinone oxidation/reduction sites, the Q(o) site and the Q(i) site. The Q(o) site relies on the joint action of two cofactors, the iron-sulfur (FeS) cluster and heme b(L). Side reactions of the Q cycle involve a generation of superoxide which is commonly thought to be a product of an oxidation of a highly unstable semiquinone formed in the Q(o) site (SQ(o)), but the overall mechanism of superoxide generation remains poorly understood. Here, we use selectively modified chains of cytochrome bc(1) to clearly isolate states linked with superoxide production. We show that this reaction takes place under severely impeded electron flow that traps heme b(L) in the reduced state and reflects a probability with which a single electron on SQ(o) is capable of reducing oxygen. SQ(o) gains this capability only when the FeS head domain, as a part of a catalytic cycle, transiently leaves the Q(o) site to communicate with the outermost cofactor, cytochrome c(1). This increases the distance between the FeS cluster and the remaining portion of the Q(o) site, reducing the likelihood that the FeS cluster participates in an immediate removal of SQ(o). In other states, the presence of both the FeS cluster and heme b(L) in the Q(o) site increases the probability of completion of short-circuit reactions which retain single electrons within the enzyme instead of releasing them on oxygen. We propose that in this way, cytochrome bc(1) under conditions of impeded electron flow employs the leak-proof short-circuits to minimize the unwanted single-electron reduction of oxygen.
细胞色素bc(1)是生物能量转换的关键酶,它通过醌循环产生或利用质子动力,该循环在嵌入两个催化醌氧化/还原位点(Q(o)位点和Q(i)位点)的两条辅因子链内运行。Q(o)位点依赖于两种辅因子的共同作用,即铁硫(FeS)簇和血红素b(L)。醌循环的副反应涉及超氧化物的产生,通常认为超氧化物是Q(o)位点形成的高度不稳定半醌(SQ(o))氧化的产物,但超氧化物产生的整体机制仍知之甚少。在这里,我们使用细胞色素bc(1)的选择性修饰链来清楚地分离与超氧化物产生相关的状态。我们表明,该反应发生在电子流严重受阻的情况下,这种受阻将血红素b(L)捕获在还原状态,并反映了SQ(o)上的单个电子还原氧的概率。只有当FeS头部结构域作为催化循环的一部分暂时离开Q(o)位点与最外层辅因子细胞色素c(1)通信时,SQ(o)才获得这种能力。这增加了FeS簇与Q(o)位点其余部分之间的距离,降低了FeS簇立即参与去除SQ(o)的可能性。在其他状态下,Q(o)位点中FeS簇和血红素b(L)的同时存在增加了短路反应完成的概率,这些反应将单个电子保留在酶内而不是释放到氧上。我们提出,通过这种方式,细胞色素bc(1)在电子流受阻的条件下利用防泄漏短路来最小化不需要的氧的单电子还原。