Sarewicz Marcin, Bujnowicz Łukasz, Bhaduri Satarupa, Singh Sandeep K, Cramer William A, Osyczka Artur
Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.
Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):1323-1328. doi: 10.1073/pnas.1618840114. Epub 2017 Jan 23.
Oxygenic respiration and photosynthesis based on quinone redox reactions face a danger of wasteful energy dissipation by diversion of the productive electron transfer pathway through the generation of reactive oxygen species (ROS). Nevertheless, the widespread quinone oxido-reductases from the cytochrome bc family limit the amounts of released ROS to a low, perhaps just signaling, level through an as-yet-unknown mechanism. Here, we propose that a metastable radical state, nonreactive with oxygen, safely holds electrons at a local energetic minimum during the oxidation of plastohydroquinone catalyzed by the chloroplast cytochrome bf This intermediate state is formed by interaction of a radical with a metal cofactor of a catalytic site. Modulation of its energy level on the energy landscape in photosynthetic vs. respiratory enzymes provides a possible mechanism to adjust electron transfer rates for efficient catalysis under different oxygen tensions.
基于醌氧化还原反应的有氧呼吸和光合作用面临着一种危险,即通过产生活性氧(ROS)使生产性电子传递途径发生转移,从而导致能量的浪费性耗散。然而,细胞色素bc家族中广泛存在的醌氧化还原酶通过一种尚不清楚的机制,将释放的ROS量限制在较低水平,也许仅起到信号传递的作用。在此,我们提出一种与氧不反应的亚稳态自由基状态,在叶绿体细胞色素bf催化质体氢醌氧化过程中,该状态能将电子安全地保持在局部能量最低点。这种中间状态是由自由基与催化位点的金属辅因子相互作用形成的。光合酶与呼吸酶能量景观上其能级的调节,为在不同氧张力下调整电子传递速率以实现高效催化提供了一种可能的机制。