C.N.R. Istituto per i processi chimico-fisici, Area della Ricerca di Pisa, Via Moruzzi 1, Pisa 56124, Italy.
Talanta. 2003 Dec 4;61(5):683-98. doi: 10.1016/S0039-9140(03)00324-2.
An overview of literature data on vapour generation techniques for cadmium and comparison with own experiments by means of several different types of hydride generation-electrothermal atomic absorption spectrometric systems (HG-ETAAS) (batch, semi-batch (SB), continuous-flow (CF) and flow-injection (FI) as well as different gas-liquid separators (GLS) exhibits apparent variations and inconsistency. However, if data for optimal chemical conditions are re-plotted in another coordinates: C(HCl) (mol l(-1)) vs. the ratio of reductant-to-acid molar input rates (i.e. millimoles per minute), [BH(4)(-)]:[H(+)], much better consistency of data is revealed: more than half of data are clustered around 0.2-0.3 mol l(-1) HCl which appears an optimal acidity at moderate BH(4)(-) concentrations; the tetrahydroborate molar input rates should always be in excess versus the H(+) molar input rates (1.1 to tenfold); relatively high flow rates of argon purge gas are required (>/=120 ml min(-1)); special attention to the blank control at ng l(-1) levels as well as to the construction of gas-liquid separator and vapour transfer lines should be paid. 'Milder' conditions for HG could be provided with some of the examined systems and GLSs, thus minimizing reagent consumption, blanks, vigorous reactions, foaming, aerosol production and drift in measurements: e.g. 0.4 mol l(-1) HCl-3% m/v NaBH(4) with the semi-batch system and 0.25 mol l(-1) HCl-2% m/v NaBH(4) in continuous flow mode. Experimental system is based on the Transversely Heated Graphite Atomizer coupled with flow injection system FIAS 400. Integrated platforms are treated for permanent modification with Zr (110 mug) or W (240 mug) and then with Ir (8 mug). Temperatures of trapping, pyrolysis and atomization are 350, 500 and 1300 degrees C, respectively. The best overall efficiency of HG, transportation and trapping is 41%. The characteristic mass for peak area measurements is m(o)=2.8 pg and the limit of detection is 0.002 mug l(-1). The long-term stability of characteristic mass (within-day, 8 h) is m(o)=2.8+/-0.1 pg (R.S.D. 4.0%, n=8), whereas the corresponding between-day figures (1 mo) are m(o)=2.8+/-0.2 pg (R.S.D. 6.6%, n=6). The linear range is 0.002-0.12 mug l(-1) with a sample loop of 1.8 ml, being strongly impaired with smaller sample volumes in FI mode. The sample throughput rate is 10 h(-1) with the semi-batch system. Applications to real human and bovine urine samples and CRMs of sea water (CASS-3), river water (SLRS-1 and SLRS-3) and urine (SRM 2670) are presented.
本文概述了用于镉的蒸气发生技术的文献数据,并通过几种不同类型的氢化物发生-电热原子吸收光谱系统(HG-ETAAS)(批处理、半批处理(SB)、连续流动(CF)和流动注射(FI)以及不同的气-液分离器(GLS)进行了比较实验,结果表明数据存在明显的差异和不一致。然而,如果将最佳化学条件的数据重新绘制在另一种坐标中:C(HCl)(mol/L)与还原剂与酸摩尔输入速率之比(即每分钟毫摩尔数),[BH4-]:[H+],数据的一致性要好得多:超过一半的数据集中在 0.2-0.3 mol/L HCl 左右,这在中等 BH4-浓度下似乎是最佳酸度;四氢硼酸盐的摩尔输入速率应始终超过 H+摩尔输入速率(1.1 至 10 倍);需要较高的氩气吹扫气体流速(>=120 ml/min);需要特别注意 ng/L 水平的空白控制,以及气-液分离器和蒸气传输线的构建。一些被检查的系统和 GLS 可以提供更温和的 HG 条件,从而最大程度地减少试剂消耗、空白、剧烈反应、泡沫、气溶胶生成和测量中的漂移:例如,半批处理系统中的 0.4 mol/L HCl-3% m/v NaBH4 和连续流动模式中的 0.25 mol/L HCl-2% m/v NaBH4。实验系统基于横向加热石墨原子化器与流动注射系统 FIAS 400 耦合。集成平台经过 Zr(110 µg)或 W(240 µg)的永久修饰,然后再用 Ir(8 µg)修饰。捕集、热解和原子化温度分别为 350、500 和 1300°C。HG、传输和捕集的最佳总效率为 41%。峰面积测量的特征质量 m(o)=2.8 pg,检测限为 0.002 µg/L。特征质量的长期稳定性(日内,8 h)为 m(o)=2.8+/-0.1 pg(RSD 4.0%,n=8),而相应的日间数据(1 mo)为 m(o)=2.8+/-0.2 pg(RSD 6.6%,n=6)。线性范围为 0.002-0.12 µg/L,样品环为 1.8 ml,在 FI 模式下,较小的样品体积会严重影响线性范围。半批处理系统的样品通量为 10 h-1。本文还介绍了实际的人类和牛尿液样品以及海水(CASS-3)、河水(SLRS-1 和 SLRS-3)和尿液(SRM 2670)的 CRM 的应用。