Mankodi Ami
Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA.
Neurol India. 2008 Jul-Sep;56(3):298-304. doi: 10.4103/0028-3886.43448.
Myotonia reflects a state of muscle fiber hyperexcitability. Impaired transmembrane conductance of either chloride or sodium ions results in myotonia. Myotonic disorders include the myotonic dystrophies and nondystrophic myotonias. Mutations in the genes encoding chloride (ClC-1) or sodium (SCN4A) channels expressed exclusively in skeletal muscle cause nondystrophic myotonias. Genetic defects in the myotonic dystrophies do not involve ion channel or its regulator proteins. Recent research supports a novel RNA-mediated disease mechanism of myotonia in the myotonic dystrophies. Myotonic dystrophy Type 1 is caused by CTG repeat expansion in the 3' untranslated region in the Dystrophia Myotonica Protein Kinase (DMPK) gene. Myotonic dystrophy Type 2 is caused by CCTG repeat expansion in the first intron in Zinc Finger Protein 9 (ZNF9) gene. The expanded repeat is transcribed in RNA and forms discrete inclusions in nucleus in both types of myotonic dystrophies. Mutant RNA sequesters MBNL1, a splice regulator protein and depletes MBNL1 from the nucleoplasm. Loss of MBNL1 results in altered splicing of ClC-1 mRNA. Altered splice products do not encode functional ClC-1 protein. Subsequent loss of chloride conductance in muscle membrane causes myotonia in the myotonic dystrophies. The purpose of this review is to discuss the clinical presentation, recent advances in understanding the disease mechanism with particular emphasis on myotonic dystrophies and potential therapy options in myotonic disorders.
肌强直反映了肌纤维的高兴奋性状态。氯离子或钠离子跨膜传导受损会导致肌强直。肌强直障碍包括强直性肌营养不良症和非营养不良性肌强直。在骨骼肌中特异性表达的编码氯离子通道(ClC-1)或钠离子通道(SCN4A)的基因突变会导致非营养不良性肌强直。强直性肌营养不良症的基因缺陷并不涉及离子通道或其调节蛋白。最近的研究支持强直性肌营养不良症中一种新的RNA介导的肌强直疾病机制。1型强直性肌营养不良症是由肌强直性营养不良蛋白激酶(DMPK)基因3'非翻译区的CTG重复序列扩增引起的。2型强直性肌营养不良症是由锌指蛋白9(ZNF9)基因第一个内含子中的CCTG重复序列扩增引起的。在这两种类型的强直性肌营养不良症中,扩增的重复序列在RNA中被转录,并在细胞核中形成离散的包涵体。突变的RNA隔离了剪接调节蛋白MBNL1,并使核质中的MBNL1耗竭。MBNL1的缺失导致ClC-1 mRNA的剪接改变。改变的剪接产物不编码功能性ClC-1蛋白。随后肌膜中氯离子传导的丧失导致强直性肌营养不良症中的肌强直。本综述的目的是讨论临床表现、在理解疾病机制方面的最新进展,特别强调强直性肌营养不良症以及肌强直障碍的潜在治疗选择。