Fernández Daniel A, Calvo Jorge
Austral Center for Scientific Research, CADIC-CONICET, Ushuaia, Tierra del Fuego, Argentina.
Fish Physiol Biochem. 2009 Mar;35(1):43-52. doi: 10.1007/s10695-008-9282-6. Epub 2008 Nov 2.
Fish skeletal muscle is an excellent model for studying muscle structure and function, since it has a very well-structured arrangement with different fiber types segregated in the axial and pectoral fin muscles. The morphological and physiological characteristics of the different muscle fiber types have been studied in several teleost species. In fish muscle, fiber number and size varies with the species considered, limiting fish maximum final length due to constraints in metabolites and oxygen diffusion. In this work, we analyze some special characteristics of the skeletal muscle of the suborder Notothenioidei. They experienced an impressive radiation inside Antarctic waters, a stable and cold environment that could account for some of their special characteristics. The number of muscle fibers is very low, 12,700-164,000, in comparison to 550,000-1,200,000 in Salmo salar of similar sizes. The size of the fibers is very large, reaching 600 microm in diameter, while for example Salmo salar of similar sizes have fibers of 220 microm maximum diameter. Evolutionary adjustment in cell cycle length for working at low temperature has been shown in Harpagifer antarcticus (111 h at 0 degrees C), when compared to the closely related sub-Antarctic species Harpagifer bispinis (150 h at 5 degrees C). Maximum muscle fiber number decreases towards the more derived notothenioids, a trend that is more related to phylogeny than to geographical distribution (and hence water temperature), with values as low as 3,600 in Harpagifer bispinis. Mitochondria volume density in slow muscles of notothenioids is very high (reaching 0.56) and since maximal rates of substrate oxidation by mitochondria is not enhanced, at least in demersal notothenioids, volume density is the only means of overcoming thermal constraints on oxidative capacity. In brief, some characteristics of the muscles of notothenioids have an apparent phylogenetic component while others seem to be adaptations to low temperature.
鱼类骨骼肌是研究肌肉结构和功能的极佳模型,因为其结构非常规整,不同类型的纤维在轴肌和胸鳍肌中呈分离状态。在几种硬骨鱼物种中,已对不同肌肉纤维类型的形态和生理特征进行了研究。在鱼类肌肉中,纤维数量和大小因所研究的物种而异,由于代谢物和氧气扩散的限制,这限制了鱼类的最大最终体长。在这项研究中,我们分析了南极鱼亚目的骨骼肌的一些特殊特征。它们在南极水域经历了惊人的辐射演化,南极水域环境稳定且寒冷,这可能是它们某些特殊特征的原因。与相似大小的大西洋鲑(Salmo salar)的550,000 - 1,200,000根相比,南极鱼亚目的肌肉纤维数量非常少,仅为12,700 - 164,000根。其纤维尺寸非常大,直径可达600微米,而相似大小的大西洋鲑的纤维最大直径为220微米。与亲缘关系相近的亚南极物种双棘哈氏南极鱼(Harpagifer bispinis,5℃时为150小时)相比,南极哈氏南极鱼(Harpagifer antarcticus,0℃时为111小时)已表现出在低温下工作时细胞周期长度的进化调整。朝着更进化的南极鱼方向,最大肌肉纤维数量减少,这种趋势更多地与系统发育相关,而非地理分布(以及水温),双棘哈氏南极鱼的肌肉纤维数量低至3,600根。南极鱼亚目慢肌中的线粒体体积密度非常高(达到0.56),并且由于线粒体底物氧化的最大速率没有提高,至少在底栖南极鱼中是这样,体积密度是克服氧化能力热限制的唯一方式。简而言之,南极鱼亚目肌肉的一些特征具有明显的系统发育成分,而其他特征似乎是对低温的适应。