Han Xiao, Hoogeman Mischa S, Levendag Peter C, Hibbard Lyndon S, Teguh David N, Voet Peter, Cowen Andrew C, Wolf Theresa K
CMS, Inc., 1145 Corporate Lake Drive, St. Louis, MO 63132, USA.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):434-41. doi: 10.1007/978-3-540-85990-1_52.
Treatment planning for high precision radiotherapy of head and neck (H&N) cancer patients requires accurate delineation of many structures and lymph node regions. Manual contouring is tedious and suffers from large inter- and intra-rater variability. To reduce manual labor, we have developed a fully automated, atlas-based method for H&N CT image segmentation that employs a novel hierarchical atlas registration approach. This registration strategy makes use of object shape information in the atlas to help improve the registration efficiency and robustness while still being able to account for large inter-subject shape differences. Validation results showed that our method provides accurate segmentation for many structures despite difficulties presented by real clinical data. Comparison of two different atlas selection strategies is also reported.
头颈部(H&N)癌症患者的高精度放射治疗计划需要精确勾勒出许多结构和淋巴结区域。手动轮廓勾画既繁琐,又存在较大的评分者间和评分者内差异。为了减少人工操作,我们开发了一种基于图谱的全自动H&N CT图像分割方法,该方法采用了一种新颖的分层图谱配准方法。这种配准策略利用图谱中的对象形状信息来提高配准效率和鲁棒性,同时仍能考虑到个体间较大的形状差异。验证结果表明,尽管实际临床数据存在困难,但我们的方法仍能对许多结构进行准确分割。本文还报告了两种不同图谱选择策略的比较。