Suppr超能文献

针对头颈癌适形调强放射治疗中基于 T2 加权 MRI 的离线剂量重建,对自动分割技术进行了研究。

Investigation of autosegmentation techniques on T2-weighted MRI for off-line dose reconstruction in MR-linac workflow for head and neck cancers.

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.

出版信息

Med Phys. 2024 Jan;51(1):278-291. doi: 10.1002/mp.16582. Epub 2023 Jul 20.

Abstract

BACKGROUND

In order to accurately accumulate delivered dose for head and neck cancer patients treated with the Adapt to Position workflow on the 1.5T magnetic resonance imaging (MRI)-linear accelerator (MR-linac), the low-resolution T2-weighted MRIs used for daily setup must be segmented to enable reconstruction of the delivered dose at each fraction.

PURPOSE

In this pilot study, we evaluate various autosegmentation methods for head and neck organs at risk (OARs) on on-board setup MRIs from the MR-linac for off-line reconstruction of delivered dose.

METHODS

Seven OARs (parotid glands, submandibular glands, mandible, spinal cord, and brainstem) were contoured on 43 images by seven observers each. Ground truth contours were generated using a simultaneous truth and performance level estimation (STAPLE) algorithm. Twenty total autosegmentation methods were evaluated in ADMIRE: 1-9) atlas-based autosegmentation using a population atlas library (PAL) of 5/10/15 patients with STAPLE, patch fusion (PF), random forest (RF) for label fusion; 10-19) autosegmentation using images from a patient's 1-4 prior fractions (individualized patient prior [IPP]) using STAPLE/PF/RF; 20) deep learning (DL) (3D ResUNet trained on 43 ground truth structure sets plus 45 contoured by one observer). Execution time was measured for each method. Autosegmented structures were compared to ground truth structures using the Dice similarity coefficient, mean surface distance (MSD), Hausdorff distance (HD), and Jaccard index (JI). For each metric and OAR, performance was compared to the inter-observer variability using Dunn's test with control. Methods were compared pairwise using the Steel-Dwass test for each metric pooled across all OARs. Further dosimetric analysis was performed on three high-performing autosegmentation methods (DL, IPP with RF and 4 fractions [IPP_RF_4], IPP with 1 fraction [IPP_1]), and one low-performing (PAL with STAPLE and 5 atlases [PAL_ST_5]). For five patients, delivered doses from clinical plans were recalculated on setup images with ground truth and autosegmented structure sets. Differences in maximum and mean dose to each structure between the ground truth and autosegmented structures were calculated and correlated with geometric metrics.

RESULTS

DL and IPP methods performed best overall, all significantly outperforming inter-observer variability and with no significant difference between methods in pairwise comparison. PAL methods performed worst overall; most were not significantly different from the inter-observer variability or from each other. DL was the fastest method (33 s per case) and PAL methods the slowest (3.7-13.8 min per case). Execution time increased with a number of prior fractions/atlases for IPP and PAL. For DL, IPP_1, and IPP_RF_4, the majority (95%) of dose differences were within ± 250 cGy from ground truth, but outlier differences up to 785 cGy occurred. Dose differences were much higher for PAL_ST_5, with outlier differences up to 1920 cGy. Dose differences showed weak but significant correlations with all geometric metrics (R2 between 0.030 and 0.314).

CONCLUSIONS

The autosegmentation methods offering the best combination of performance and execution time are DL and IPP_1. Dose reconstruction on on-board T2-weighted MRIs is feasible with autosegmented structures with minimal dosimetric variation from ground truth, but contours should be visually inspected prior to dose reconstruction in an end-to-end dose accumulation workflow.

摘要

背景

为了准确地为在 1.5T 磁共振成像(MRI)-直线加速器(MR-linac)上采用自适应定位工作流程治疗的头颈部癌症患者累计剂量,每日体位设置中使用的低分辨率 T2 加权 MRI 必须进行分割,以便在每个分次中重建所传递的剂量。

目的

在这项初步研究中,我们评估了在线性加速器上的车载设置 MRI 上的头颈部危及器官(OAR)的各种自动分割方法,以便离线重建所传递的剂量。

方法

由 7 位观察者分别在 43 张图像上勾画了 7 个 OAR(腮腺、颌下腺、下颌骨、脊髓和脑干)。使用同时真实和性能水平估计(STAPLE)算法生成了真实的轮廓。在 ADMIRE 中评估了 20 种自动分割方法:1-9)使用人群图谱库(PAL)的基于图谱的自动分割,PAL 包含 5/10/15 位患者,使用 STAPLE、补丁融合(PF)、随机森林(RF)进行标签融合;10-19)使用患者的 1-4 个前分次图像(个体化患者先验[IPP])的自动分割,使用 STAPLE/PF/RF;20)使用深度神经网络(DL)(在 43 个地面真实结构集和由一位观察者勾画的 45 个结构上进行训练的 3D ResUNet)。为每个方法测量执行时间。使用 Dice 相似系数、平均表面距离(MSD)、Hausdorff 距离(HD)和 Jaccard 指数(JI)比较自动分割的结构与真实结构。对于每个指标和 OAR,使用 Dunn 检验与对照比较与观察者间变异性的性能。对于所有 OAR ,使用 Steel-Dwass 检验比较各个指标的两两方法。对于三个高表现的自动分割方法(DL、使用 RF 和 4 个分次的 IPP[IPP_RF_4]、使用 1 个分次的 IPP[IPP_1])和一个低表现的方法(使用 STAPLE 和 5 个图谱的 PAL[PAL_ST_5]),进一步进行了剂量学分析。对于 5 位患者,使用地面真实和自动分割的结构集,在设置图像上重新计算临床计划的传递剂量。计算了最大和平均剂量到每个结构之间的差异,并与几何指标相关联。

结果

DL 和 IPP 方法总体表现最好,所有方法均显著优于观察者间变异性,并且在两两比较中无方法间差异。PAL 方法总体表现最差;大多数方法与观察者间变异性或彼此之间均无显著差异。DL 是最快的方法(每个病例 33 秒),PAL 方法最慢(每个病例 3.7-13.8 分钟)。对于 IPP 和 PAL,执行时间随着前分次/图谱的数量增加而增加。对于 DL、IPP_1 和 IPP_RF_4,大多数(95%)剂量差异在与地面真实值相差±250cGy 以内,但存在高达 785cGy 的离群剂量差异。对于 PAL_ST_5,剂量差异要高得多,高达 1920cGy 的离群剂量差异。剂量差异与所有几何指标均显示出弱但显著的相关性(R2 在 0.030 到 0.314 之间)。

结论

在性能和执行时间方面具有最佳组合的自动分割方法是 DL 和 IPP_1。使用自动分割的结构在车载 T2 加权 MRI 上进行剂量重建是可行的,与地面真实值的剂量差异最小,但在端到端剂量积累工作流程中进行剂量重建之前,应目视检查轮廓。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验