Zheng Guoyan
MEM Research Center, University of Bern, Stauffacherstr. 78, CH-3014, Switzerland.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):922-9. doi: 10.1007/978-3-540-85990-1_111.
This paper addresses the problem of estimating the 3D rigid pose of a CT volume of an object from its 2D X-ray projections. We use maximization of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. In this paper, instead of directly maximizing mutual information, we propose to use a variational approximation derived from the Kullback-Leibler bound. Spatial information is then incorporated into this variational approximation using a Markov random field model. The newly derived similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on X-ray and CT datasets of a plastic phantom and a cadaveric spine segment.
本文探讨了从物体的二维X射线投影估计其CT体积的三维刚体姿态的问题。我们使用互信息最大化,这是一种用于多模态和单模态图像配准任务的精确相似性度量。然而,众所周知,标准的互信息度量只考虑强度值而不考虑空间信息,其鲁棒性值得怀疑。在本文中,我们不是直接最大化互信息,而是提出使用从库尔贝克-莱布勒散度界导出的变分近似。然后使用马尔可夫随机场模型将空间信息纳入此变分近似中。新导出的相似性度量具有最小二乘形式,并且可以通过多分辨率列文伯格-马夸尔特优化器有效地最小化。给出了关于塑料模型和尸体脊柱节段的X射线和CT数据集的实验结果。