Suppr超能文献

使用混合优化技术实现膝关节快速屈曲运动的稳健二维/三维配准

Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization.

作者信息

Ohnishi Takashi, Suzuki Masahiko, Kobayashi Tatsuya, Naomoto Shinji, Sukegawa Tomoyuki, Nawata Atsushi, Haneishi Hideaki

机构信息

Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku 263-8522, Chiba, Japan.

出版信息

Radiol Phys Technol. 2013 Jan;6(1):170-9. doi: 10.1007/s12194-012-0185-y. Epub 2012 Nov 9.

Abstract

Previously, we proposed a 2D/3D registration method that uses Powell's algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell's algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell's algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell's algorithm with the Nelder-Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell's algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell's algorithm alone.

摘要

此前,我们提出了一种二维/三维配准方法,该方法使用鲍威尔算法,通过三维计算机断层扫描和双平面荧光透视图像来获取膝关节的三维运动。对于荧光透视图像的每一帧,二维/三维配准都是连续且自动进行的。除了第一帧外,该方法从每一帧的前一帧的最优参数开始,使用鲍威尔算法搜索下一组最优参数。然而,如果膝关节的屈曲运动很快,鲍威尔算法很可能会出现不匹配,因为初始参数与正确参数相差甚远。在本研究中,我们应用了一种将鲍威尔算法与 Nelder-Mead 单纯形(NM-单纯形)算法相结合的混合优化算法(HPS)来克服这个问题。在均方根误差(RMSE)、目标配准误差(TRE)、成功率和处理时间方面,将 HPS 的性能与鲍威尔算法、NM-单纯形算法、拟牛顿算法以及将拟牛顿算法与 NM-单纯形算法相结合的混合优化算法对五个患者数据集的单独性能进行了比较。HPS 的 RMSE、TRE 和成功率均优于其他优化算法,且处理时间与单独使用鲍威尔算法时相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验