Suppr超能文献

自固化胶原-磷酸钙骨水泥:力学性能和细胞性能。

Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties.

机构信息

Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201, USA.

出版信息

J Biomed Mater Res A. 2009 Nov;91(2):605-13. doi: 10.1002/jbm.a.32248.

Abstract

Calcium phosphate cement (CPC) can conform to complex bone cavities and set in-situ to form bioresorbable hydroxyapatite. The aim of this study was to develop a CPC-collagen composite with improved fracture resistance, and to investigate the effects of collagen on mechanical and cellular properties. A type-I bovine-collagen was incorporated into CPC. MC3T3-E1 osteoblasts were cultured. At CPC powder/liquid mass ratio of 3, the work-of-fracture (mean +/- sd; n = 6) was increased from (22 +/- 4) J/m(2) at 0% collagen, to (381 +/- 119) J/m(2) at 5% collagen (p < or = 0.05). At 2.5-5% of collagen, the flexural strength at powder/liquid ratios of 3 and 3.5 was 8-10 MPa. They matched the previously reported 2-11 MPa of sintered porous hydroxyapatite implants. SEM revealed that the collagen fibers were covered with nano-apatite crystals and bonded to the CPC matrix. Higher collagen content increased the osteoblast cell attachment (p < or = 0.05). The number of live cells per specimen area was (382 +/- 99) cells/mm(2) on CPC containing 5% collagen, higher than (173 +/- 42) cells/mm(2) at 0% collagen (p < or = 0.05). The cytoplasmic extensions of the cells anchored to the nano-apatite crystals of the CPC matrix. In summary, collagen was incorporated into in situ-setting, nano-apatitic CPC, achieving a 10-fold increase in work-of-fracture (toughness) and two-fold increase in osteoblast cell attachment. This moldable/injectable, mechanically strong, nano-apatite-collagen composite may enhance bone regeneration in moderate stress-bearing applications.

摘要

磷酸钙骨水泥 (CPC) 可以适应复杂的骨腔,并原位形成可吸收的羟磷灰石。本研究旨在开发一种具有更高抗断裂能力的 CPC-胶原复合材料,并研究胶原对机械性能和细胞性能的影响。将 I 型牛胶原蛋白掺入 CPC 中。培养 MC3T3-E1 成骨细胞。当 CPC 粉末/液体质量比为 3 时,断裂功(平均值 +/- 标准差;n = 6)从 0%胶原时的(22 +/- 4)J/m(2)增加到 5%胶原时的(381 +/- 119)J/m(2)(p <= 0.05)。在 2.5-5%的胶原含量下,粉末/液体比为 3 和 3.5 时的弯曲强度为 8-10 MPa。这些值与先前报道的烧结多孔羟磷灰石植入物的 2-11 MPa 相匹配。SEM 显示,胶原纤维被纳米磷灰石晶体覆盖并与 CPC 基质结合。较高的胶原含量增加了成骨细胞的附着(p <= 0.05)。每个标本面积的活细胞数为 CPC 中含有 5%胶原时为(382 +/- 99)个细胞/mm(2),高于 0%胶原时的(173 +/- 42)个细胞/mm(2)(p <= 0.05)。细胞的细胞质延伸锚定在 CPC 基质的纳米磷灰石晶体上。总之,胶原被掺入到原位凝固的纳米磷灰石 CPC 中,断裂功(韧性)提高了 10 倍,成骨细胞附着增加了两倍。这种可模塑/可注射、机械强度高的纳米磷灰石-胶原复合材料可能会增强中度承重应用中的骨再生。

相似文献

1
Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties.
J Biomed Mater Res A. 2009 Nov;91(2):605-13. doi: 10.1002/jbm.a.32248.
2
Osteoblastic induction on calcium phosphate cement-chitosan constructs for bone tissue engineering.
J Biomed Mater Res A. 2010 Jul;94(1):223-33. doi: 10.1002/jbm.a.32665.
3
Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration.
Dent Mater. 2008 Sep;24(9):1212-22. doi: 10.1016/j.dental.2008.02.001. Epub 2008 Mar 21.
5
Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility.
Biomaterials. 2005 Apr;26(12):1337-48. doi: 10.1016/j.biomaterials.2004.04.043.
6
High-strength, in situ-setting calcium phosphate composite with protein release.
J Biomed Mater Res A. 2008 May;85(2):388-96. doi: 10.1002/jbm.a.31347.
8
Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures.
Biomaterials. 2007 Sep;28(26):3786-96. doi: 10.1016/j.biomaterials.2007.05.015. Epub 2007 May 26.
10
Self-hardening calcium phosphate composite scaffold for bone tissue engineering.
J Orthop Res. 2004 May;22(3):535-43. doi: 10.1016/j.orthres.2003.09.010.

引用本文的文献

1
Biomaterial-based strategies for bone cement: modulating the bone microenvironment and promoting regeneration.
J Nanobiotechnology. 2025 May 13;23(1):343. doi: 10.1186/s12951-025-03363-5.
3
Alternative Geometries for 3D Bioprinting of Calcium Phosphate Cement as Bone Substitute.
Biomedicines. 2022 Dec 13;10(12):3242. doi: 10.3390/biomedicines10123242.
5
Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study.
J Mater Sci Mater Med. 2016 Dec;27(12):191. doi: 10.1007/s10856-016-5806-2. Epub 2016 Nov 14.
6
Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements.
J Mater Sci Mater Med. 2016 Mar;27(3):58. doi: 10.1007/s10856-016-5665-x. Epub 2016 Jan 19.
7
Biomaterials approaches to treating implant-associated osteomyelitis.
Biomaterials. 2016 Mar;81:58-71. doi: 10.1016/j.biomaterials.2015.12.012. Epub 2015 Dec 18.
8
Reaction kinetics of dual setting α-tricalcium phosphate cements.
J Mater Sci Mater Med. 2016 Jan;27(1):1. doi: 10.1007/s10856-015-5616-y. Epub 2015 Nov 26.
10
Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells.
Bone Res. 2014 Sep 30;2:14017. doi: 10.1038/boneres.2014.17. eCollection 2014.

本文引用的文献

1
2
Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering.
J Mater Sci Mater Med. 2007 Feb;18(2):201-9. doi: 10.1007/s10856-006-0682-9.
3
Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite.
Biomacromolecules. 2007 Feb;8(2):631-7. doi: 10.1021/bm060879w. Epub 2007 Jan 26.
4
Premixed calcium phosphate cements: synthesis, physical properties, and cell cytotoxicity.
Dent Mater. 2007 Apr;23(4):433-41. doi: 10.1016/j.dental.2006.02.014. Epub 2006 May 6.
5
Collagen scaffolds derived from a marine source and their biocompatibility.
Biomaterials. 2006 May;27(15):2951-61. doi: 10.1016/j.biomaterials.2006.01.015. Epub 2006 Feb 2.
6
Fibrillar assembly and stability of collagen coating on titanium for improved osteoblast responses.
J Biomed Mater Res A. 2005 Dec 1;75(3):629-38. doi: 10.1002/jbm.a.30463.
7
Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen.
J Biomed Mater Res A. 2005 Jun 15;73(4):409-21. doi: 10.1002/jbm.a.30279.
8
Bio-adhesive surfaces to promote osteoblast differentiation and bone formation.
J Dent Res. 2005 May;84(5):407-13. doi: 10.1177/154405910508400502.
9
Preparation and characterization of porous beta-tricalcium phosphate/collagen composites with an integrated structure.
Biomaterials. 2005 Sep;26(26):5276-84. doi: 10.1016/j.biomaterials.2005.01.064.
10
Injectability of calcium phosphate pastes.
Biomaterials. 2005 May;26(13):1553-63. doi: 10.1016/j.biomaterials.2004.05.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验