Suppr超能文献

野生丽鱼科鱼类种群的谱系重建

Pedigree reconstruction in wild cichlid fish populations.

作者信息

Koch Martin, Hadfield Jarrod D, Sefc Kristina M, Sturmbauer Christian

机构信息

Department of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria.

出版信息

Mol Ecol. 2008 Oct;17(20):4500-11. doi: 10.1111/j.1365-294X.2008.03925.x.

Abstract

It is common practice to use microsatellites to detect parents and their offspring in wild and captive populations, in order to reconstruct a pedigree. However, correct inference is often constrained by a number of factors, including the absence of demographic data and ignorance regarding the completeness of parental sampling. Here we present a new Bayesian estimator that simultaneously estimates the pedigree and the size of the unsampled population. The method is robust to genotyping error, and can estimate pedigrees in the absence of demographic data. Using a large-scale microsatellite assay in four wild cichlid fish populations of Lake Tanganyika (1000 individuals in total), we assess the performance of the Bayesian estimator against the most popular assignment program, Cervus. We found small but significant pedigrees in each of the tested populations using the Bayesian procedure, but Cervus had very high type I error rates when the size of the unsampled population was assumed to be lower than what it was. The need of pedigree relationships to infer adaptive processes in natural populations places strong constraints on sampling design and identification of multigenerational pedigrees in natural populations.

摘要

在野生和圈养种群中,使用微卫星来检测亲本及其后代以重建谱系是常见的做法。然而,正确的推断往往受到多种因素的限制,包括缺乏人口统计数据以及对亲本采样完整性的忽视。在这里,我们提出了一种新的贝叶斯估计器,它可以同时估计谱系和未采样种群的大小。该方法对基因分型错误具有鲁棒性,并且可以在没有人口统计数据的情况下估计谱系。通过对坦噶尼喀湖的四个野生丽鱼科鱼类种群(总共1000个个体)进行大规模微卫星分析,我们将贝叶斯估计器的性能与最流行的分配程序Cervus进行了评估。我们使用贝叶斯方法在每个测试种群中发现了小而显著的谱系,但当假设未采样种群的大小低于实际大小时,Cervus的I型错误率非常高。在自然种群中推断适应性过程时对谱系关系的需求对采样设计和自然种群中多代谱系的识别提出了强烈的限制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验