Suppr超能文献

具有高填充因子的矩形膜晶圆键合电容式微机械超声换能器的评估。

Evaluation of wafer bonded CMUTs with rectangular membranes featuring high fill factor.

作者信息

Wong Serena H, Kupnik Mario, Zhuang Xuefeng, Lin Der-Song, Butts-Pauly Kim, Khuri-Yakub Butrus T

机构信息

Edward L Ginzton Laboratory, Stanford University, Stanford, CA, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Sep;55(9):2053-65. doi: 10.1109/TUFFC.897.

Abstract

Increasing fill factor is one design approach used to increase average output displacement, output pressure, and sensitivity of capacitive micromachined ultrasonic transducers (CMUTs). For rectangular cells, the cell-to-cell spacing and the aspect ratio determine the fill factor. In this paper, we explore the effects of these parameters on performance, in particular the nonuniformity of collapse voltage between neighboring cells and presence of higher order modes in air or immersed operation. We used a white light interferometer to measure nonuniformity in deflection between neighboring cells. We found that reducing the cell-to-cell spacing could cause bending of the center support post, which amplifies nonuniformities in collapse voltage to 18.4% between neighboring cells. Using a 2-D finite element model (FEM), we found that for our designs, increasing the support post width to 1.67 times the membrane thickness alleviated the post bending problem. Using impedance and interferometer measurements to observe the effects of aspect ratio on higher order modes, we found that the (1,3) modal frequency approached the (1,1) modal frequency as the aspect ratio of the rectangles increased. In air operation, under continuous wave (CW) excitation at the center frequency, the rectangular cells behaved in the (1,1) mode. In immersion, because of dispersive guided modes, these cells operated in a higher order mode when excited with a CW signal at the center frequency. This contributed to a loss of output pressure; for this reason our rectangular design was unsuitable for CW operation in immersion.

摘要

增加填充因子是一种用于提高电容式微机械超声换能器(CMUT)平均输出位移、输出压力和灵敏度的设计方法。对于矩形单元,单元间距和长宽比决定了填充因子。在本文中,我们探讨了这些参数对性能的影响,特别是相邻单元之间崩溃电压的不均匀性以及在空气或浸没操作中高阶模式的存在。我们使用白光干涉仪测量相邻单元之间挠度的不均匀性。我们发现,减小单元间距会导致中心支撑柱弯曲,这将相邻单元之间崩溃电压的不均匀性放大到18.4%。使用二维有限元模型(FEM),我们发现对于我们的设计,将支撑柱宽度增加到膜厚度的1.67倍可缓解柱弯曲问题。通过阻抗和干涉仪测量来观察长宽比对高阶模式的影响,我们发现随着矩形长宽比的增加,(1,3)模态频率接近(1,1)模态频率。在空气操作中,在中心频率的连续波(CW)激励下,矩形单元以(1,1)模式工作。在浸没状态下,由于色散导模,当用中心频率的CW信号激励时,这些单元以高阶模式工作。这导致了输出压力的损失;因此,我们的矩形设计不适用于浸没状态下的CW操作。

相似文献

1
Evaluation of wafer bonded CMUTs with rectangular membranes featuring high fill factor.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Sep;55(9):2053-65. doi: 10.1109/TUFFC.897.
2
Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations.
Ultrasonics. 2009 Dec;49(8):765-73. doi: 10.1016/j.ultras.2009.06.003. Epub 2009 Jul 2.
3
CMUTS with dual-electrode structure for improved transmit and receive performance.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Feb;53(2):483-91. doi: 10.1109/tuffc.2006.1593388.
4
Capacitive micromachined ultrasonic transducers with piston-shaped membranes: fabrication and experimental characterization.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jan;56(1):136-45. doi: 10.1109/TUFFC.2009.1013.
5
Dynamic analysis of capacitive micromachined ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2270-5. doi: 10.1109/tuffc.2005.1563269.
6
Deep-collapse operation of capacitive micromachined ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Nov;58(11):2475-83. doi: 10.1109/TUFFC.2011.2104.
7
CMUT characterization by interferometric and electric measurements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Dec;56(12):2711-21. doi: 10.1109/TUFFC.2009.1362.
8
Finite-element analysis of capacitive micromachined ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2185-98. doi: 10.1109/tuffc.2005.1563262.
9
Capacitive micromachined ultrasonic transducers (CMUTs) with isolation posts.
Ultrasonics. 2008 Mar;48(1):74-81. doi: 10.1016/j.ultras.2007.11.006. Epub 2007 Dec 14.
10
Optimization of the gain-bandwidth product of capacitive micromachined ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2211-9. doi: 10.1109/tuffc.2005.1563264.

引用本文的文献

1
Research on Drive and Detection Technology of CMUT Multi-Array Transducers Based on MEMS Technology.
Micromachines (Basel). 2025 May 22;16(6):604. doi: 10.3390/mi16060604.
2
Radiation Impedance of Rectangular CMUTs.
Sensors (Basel). 2024 Sep 7;24(17):5823. doi: 10.3390/s24175823.
3
Outperforming piezoelectric ultrasonics with high-reliability single-membrane CMUT array elements.
Microsyst Nanoeng. 2022 Jun 2;8:59. doi: 10.1038/s41378-022-00392-0. eCollection 2022.
4
A Novel Hexagonal Beam Steering Electrowetting Device for Solar Energy Concentration.
Micromachines (Basel). 2020 Nov 19;11(11):1016. doi: 10.3390/mi11111016.
5
Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations.
Ultrasonics. 2009 Dec;49(8):765-73. doi: 10.1016/j.ultras.2009.06.003. Epub 2009 Jul 2.
6
Capacitive micromachined ultrasonic transducers for therapeutic ultrasound applications.
IEEE Trans Biomed Eng. 2010 Jan;57(1):114-23. doi: 10.1109/TBME.2009.2026909. Epub 2009 Jul 21.

本文引用的文献

1
Feasibility of MR-temperature mapping of ultrasonic heating from a CMUT.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Apr;55(4):811-8. doi: 10.1109/TUFFC.2008.715.
2
Finite element modeling and experimental characterization of crosstalk in 1-D CMUT arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):418-30. doi: 10.1109/tuffc.2007.256.
3
CMUTS with dual-electrode structure for improved transmit and receive performance.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Feb;53(2):483-91. doi: 10.1109/tuffc.2006.1593388.
4
Capacitive micromachined ultrasonic transducers: fabrication technology.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2242-58. doi: 10.1109/tuffc.2005.1563267.
5
Finite-element analysis of capacitive micromachined ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2185-98. doi: 10.1109/tuffc.2005.1563262.
6
Three-dimensional modelling of micromachined-ultrasonic-transducer arrays operating in water.
Ultrasonics. 2005 May;43(6):457-65. doi: 10.1016/j.ultras.2004.09.006. Epub 2004 Oct 28.
9
Capacitive micromachined ultrasonic Lamb wave transducers using rectangular membranes.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Sep;50(9):1191-203. doi: 10.1109/tuffc.2003.1235330.
10
Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?
IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Nov;49(11):1596-610. doi: 10.1109/tuffc.2002.1049742.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验