Suppr超能文献

通过在大肠杆菌中的互补分析对蓝细菌类胡萝卜素酮醇酶CrtW和羟化酶CrtR进行表征。

Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli.

作者信息

Makino Takuya, Harada Hisashi, Ikenaga Hiroshi, Matsuda Satoru, Takaichi Shinichi, Shindo Kazutoshi, Sandmann Gerhard, Ogata Takehiko, Misawa Norihiko

机构信息

School of Fisheries Sciences, Kitasato University, Sanriku-cho, Ofunato, 022-0101 Japan.

出版信息

Plant Cell Physiol. 2008 Dec;49(12):1867-78. doi: 10.1093/pcp/pcn169. Epub 2008 Nov 5.

Abstract

The pathway from beta-carotene to astaxanthin is a crucial step in the synthesis of astaxanthin, a red antioxidative ketocarotenoid that confers beneficial effects on human health. Two enzymes, a beta-carotene ketolase (carotenoid 4,4'-oxygenase) and a beta-carotene hydroxylase (carotenoid 3,3'-hydroxylase), are involved in this pathway. Cyanobacteria are known to utilize the carotenoid ketolase CrtW and/or CrtO, and the carotenoid hydroxylase CrtR. Here, we compared the catalytic functions of CrtW ketolases, which originated from Gloeobacter violaceus PCC 7421, Anabaena (also known as Nostoc) sp. PCC 7120 and Nostoc punctiforme PCC 73102, and CrtR from Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120 and Anabaena variabilis ATCC 29413 by complementation analysis using recombinant Escherichia coli cells that synthesized various carotenoid substrates. The results demonstrated that the CrtW proteins derived from Anabaena sp. PCC 7120 as well as N. punctiforme PCC 73102 (CrtW148) can convert not only beta-carotene but also zeaxanthin into their 4,4'-ketolated products, canthaxanthin and astaxanthin, respectively. In contrast, the Anabaena CrtR enzymes were very poor in accepting either beta-carotene or canthaxanthin as substrates. By comparison, the Synechocystis sp. PCC 6803 CrtR converted beta-carotene into zeaxanthin efficiently. We could assign the catalytic functions of the gene products involved in ketocarotenoid biosynthetic pathways in Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120 and N. punctiforme PCC 73102, based on the present and previous findings. This explains why these cyanobacteria cannot produce astaxanthin and why only Synechocystis sp. PCC 6803 can produce zeaxanthin.

摘要

从β-胡萝卜素到虾青素的途径是虾青素合成中的关键步骤,虾青素是一种红色抗氧化酮类胡萝卜素,对人体健康有益。该途径涉及两种酶,即β-胡萝卜素酮酶(类胡萝卜素4,4'-加氧酶)和β-胡萝卜素羟化酶(类胡萝卜素3,3'-羟化酶)。已知蓝细菌利用类胡萝卜素酮酶CrtW和/或CrtO以及类胡萝卜素羟化酶CrtR。在此,我们通过使用合成各种类胡萝卜素底物的重组大肠杆菌细胞进行互补分析,比较了源自紫球藻PCC 7421、鱼腥藻(也称为念珠藻)sp. PCC 7120和点形念珠藻PCC 73102的CrtW酮酶以及来自集胞藻sp. PCC 6803、鱼腥藻sp. PCC 7120和多变鱼腥藻ATCC 29413的CrtR的催化功能。结果表明,源自鱼腥藻sp. PCC 7120以及点形念珠藻PCC 73102(CrtW148)的CrtW蛋白不仅可以将β-胡萝卜素,还可以将玉米黄质分别转化为它们的4,4'-酮化产物角黄素和虾青素。相比之下,鱼腥藻的CrtR酶接受β-胡萝卜素或角黄素作为底物的能力非常差。相比之下,集胞藻sp. PCC 6803的CrtR能有效地将β-胡萝卜素转化为玉米黄质。基于目前和先前的研究结果,我们可以确定集胞藻sp. PCC 6803、鱼腥藻sp. PCC 7120和点形念珠藻PCC 73102中参与酮类胡萝卜素生物合成途径的基因产物的催化功能。这解释了为什么这些蓝细菌不能产生虾青素,以及为什么只有集胞藻sp. PCC 6803能产生玉米黄质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验