Rivas Beatriz, Torre Paolo, Domínguez José Manuel, Converti Attilio
Department of Chemical and Process Engineering "G.B. Bonino," Genoa University, Via Opera Pia 15, 16145 Genoa, Italy.
Biotechnol Bioeng. 2009 Mar 1;102(4):1062-73. doi: 10.1002/bit.22155.
In order to improve the biotechnological production of xylitol, the metabolism of Debaryomyces hansenii NRRL Y-7426 in corncob hemicellulose hydrolyzate has been investigated under different conditions, where either maintenance or growth requirements predominated. For this purpose, the experimental results of two sets of batch bioconversions carried out alternatively varying the starting xylose concentration in the hydrolyzate (65.6 < or = S(0) < or = 154.7 g L(-1)) or the initial biomass level (3.0 < or = X(0) < or = 54.6 g(DM) L(-1)) were used to fit a metabolic model consisting of carbon material and ATP balances based on five main activities, namely fermentative assimilation of pentoses, semi-aerobic pentose-to-pentitol bioconversion, biomass growth on pentoses, catabolic oxidation of pentoses, and acetic acid and NADH regeneration by the electron transport system. Such an approach allowed separately evaluating the main bioenergetic constants of this microbial system, that is, the specific rates of ATP and xylose consumption due to maintenance (m(ATP) = 21.0 mmol(ATP) C-mol(DM) (-1)h(-1); m(Xyl) = 6.5 C-mmol(Xyl) C-mol(DM) (-1)h(-1)) and the true yields of biomass on ATP (Y(ATP) (max) = 0.83 C-mol(DM) mol(ATP) (-1)) and on xylose (Y(Xyl) (max) = 0.93 C-mol(DM) C-mol(Xyl) (-1)). The results of this study highlighted that the system, at very high S(0) and X(0) values, dramatically increased its energy requirements for cell maintenance, owing to the occurrence of stressing conditions. In particular, for S(0) > 130 g L(-1), these activities required an ATP consumption of about 2.1 mol(ATP) L(-1), that is, a value about seven- to eightfold that observed at low substrate concentration. Such a condition led to an increase in the fraction of ATP addressed to cell maintenance from 47% to 81%. On the other hand, the very high percentage of ATP addressed to maintenance (> 96%) at very high cell concentration (X(0) > or = 25 g(DM) L(-1)) was likely due to the insufficient substrate to sustain the growth.
为了提高木糖醇的生物技术产量,研究了汉逊德巴利酵母NRRL Y - 7426在玉米芯半纤维素水解物中不同条件下的代谢情况,这些条件下维持需求或生长需求占主导地位。为此,使用了两组分批生物转化的实验结果,交替改变水解物中的起始木糖浓度(65.6 ≤ S(0) ≤ 154.7 g L(-1))或初始生物量水平(3.0 ≤ X(0) ≤ 54.6 g(DM) L(-1)),以拟合一个基于五个主要活动的代谢模型,该模型由碳物质和ATP平衡组成,这五个主要活动分别是戊糖的发酵同化、半好氧戊糖到戊糖醇的生物转化、戊糖上的生物量生长、戊糖的分解代谢氧化以及电子传递系统进行的乙酸和NADH再生。这种方法能够分别评估该微生物系统的主要生物能量常数,即维持所需的ATP和木糖消耗的比速率(m(ATP) = 21.0 mmol(ATP) C-mol(DM) (-1)h(-1);m(Xyl) = 6.5 C-mmol(Xyl) C-mol(DM) (-1)h(-1))以及生物量对ATP(Y(ATP) (max) = 0.83 C-mol(DM) mol(ATP) (-1))和木糖(Y(Xyl) (max) = 0.93 C-mol(DM) C-mol(Xyl) (-1))的真实产率。本研究结果突出表明,在非常高的S(0)和X(0)值下,由于应激条件的出现,该系统显著增加了细胞维持所需的能量。特别是,当S(0) > 130 g L(-1)时,这些活动需要消耗约2.1 mol(ATP) L(-1)的ATP,即该值约为在低底物浓度下观察到的值的七到八倍。这种情况导致用于细胞维持的ATP比例从47%增加到81%。另一方面,在非常高的细胞浓度(X(0) ≥ 25 g(DM) L(-1))下,用于维持的ATP比例非常高(> 96%),这可能是由于底物不足以维持生长。