Wang Yi, Eskridge Kent, Zhang Shunpu, Wang Dong
Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, 68583-0963, USA.
J Pharmacokinet Pharmacodyn. 2008 Oct;35(5):553-71. doi: 10.1007/s10928-008-9101-9. Epub 2008 Nov 7.
A spline-enhanced ordinary differential equation (ODE) method is proposed for developing a proper parametric kinetic ODE model and is shown to be a useful approach to PK/PD model development. The new method differs substantially from a previously proposed model development approach using a stochastic differential equation (SDE)-based method. In the SDE-based method, a Gaussian diffusion term is introduced into an ODE to quantify the system noise. In our proposed method, we assume an ODE system with form dx/dt = A(t)x + B(t) where B(t) is a nonparametric function vector that is estimated using penalized splines. B(t) is used to construct a quantitative measure of model uncertainty useful for finding the proper model structure for a given data set. By means of two examples with simulated data, we demonstrate that the spline-enhanced ODE method can provide model diagnostics and serve as a basis for systematic model development similar to the SDE-based method. We compare and highlight the differences between the SDE-based and the spline-enhanced ODE methods of model development. We conclude that the spline-enhanced ODE method can be useful for PK/PD modeling since it is based on a relatively uncomplicated estimation algorithm which can be implemented with readily available software, provides numerically stable, robust estimation for many models, is distribution-free and allows for identification and accommodation of model deficiencies due to model misspecification.
本文提出了一种样条增强常微分方程(ODE)方法,用于构建合适的参数动力学ODE模型,并证明该方法是PK/PD模型开发的一种有效途径。新方法与先前提出的基于随机微分方程(SDE)的模型开发方法有很大不同。在基于SDE的方法中,高斯扩散项被引入到ODE中以量化系统噪声。在我们提出的方法中,我们假设一个形式为dx/dt = A(t)x + B(t)的ODE系统,其中B(t)是一个非参数函数向量,通过惩罚样条进行估计。B(t)用于构建模型不确定性的定量度量,有助于为给定数据集找到合适的模型结构。通过两个模拟数据示例,我们证明样条增强ODE方法能够提供模型诊断,并可作为类似于基于SDE方法的系统模型开发的基础。我们比较并突出了基于SDE和样条增强ODE的模型开发方法之间的差异。我们得出结论,样条增强ODE方法对于PK/PD建模可能是有用的,因为它基于相对简单的估计算法,该算法可以通过现成的软件实现,为许多模型提供数值稳定、稳健的估计,不依赖于分布,并且允许识别和调整由于模型设定错误导致的模型缺陷。