Suppr超能文献

具有随机微分方程的非线性混合效应模型:一种估计算法的实现

Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm.

作者信息

Overgaard Rune V, Jonsson Niclas, Tornøe Christoffer W, Madsen Henrik

机构信息

Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.

出版信息

J Pharmacokinet Pharmacodyn. 2005 Feb;32(1):85-107. doi: 10.1007/s10928-005-2104-x.

Abstract

Pharmacokinetic/pharmacodynamic modelling is most often performed using non-linear mixed-effects models based on ordinary differential equations with uncorrelated intra-individual residuals. More sophisticated residual error models as e.g. stochastic differential equations (SDEs) with measurement noise can in many cases provide a better description of the variations, which could be useful in various aspects of modelling. This general approach enables a decomposition of the intra-individual residual variation epsilon into system noise w and measurement noise e. The present work describes implementation of SDEs in a non-linear mixed-effects model, where parameter estimation was performed by a novel approximation of the likelihood function. This approximation is constructed by combining the First-Order Conditional Estimation (FOCE) method used in non-linear mixed-effects modelling with the Extended Kalman Filter used in models with SDEs. Fundamental issues concerning the proposed model and estimation algorithm are addressed by simulation studies, concluding that system noise can successfully be separated from measurement noise and inter-individual variability.

摘要

药代动力学/药效学建模通常使用基于常微分方程且个体内残差不相关的非线性混合效应模型来进行。更复杂的残差误差模型,例如带有测量噪声的随机微分方程(SDE),在许多情况下能够更好地描述变异情况,这在建模的各个方面可能会很有用。这种通用方法能够将个体内残差变异ε分解为系统噪声w和测量噪声e。本研究描述了在非线性混合效应模型中实施随机微分方程的情况,其中通过似然函数的一种新近似方法进行参数估计。这种近似方法是通过将非线性混合效应建模中使用的一阶条件估计(FOCE)方法与随机微分方程模型中使用的扩展卡尔曼滤波器相结合构建而成的。通过模拟研究探讨了所提出模型和估计算法的基本问题,得出结论:系统噪声能够成功地与测量噪声以及个体间变异性分离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验