Connolly Keith, Rife Jason P, Culver Gloria
Department of Biology, University of Rochester, Rochester, NY 14627, USA.
Mol Microbiol. 2008 Dec;70(5):1062-75. doi: 10.1111/j.1365-2958.2008.06485.x.
While the general blueprint of ribosome biogenesis is evolutionarily conserved, most details have diverged considerably. A striking exception to this divergence is the universally conserved KsgA/Dim1p enzyme family, which modifies two adjacent adenosines in the terminal helix of small subunit ribosomal RNA (rRNA). While localization of KsgA on 30S subunits [small ribosomal subunits (SSUs)] and genetic interaction data have suggested that KsgA acts as a ribosome biogenesis factor, mechanistic details and a rationale for its extreme conservation are still lacking. To begin to address these questions we have characterized the function of Escherichia coli KsgA in vivo using both a ksgA deletion strain and a methyltransferase-deficient form of this protein. Our data reveal cold sensitivity and altered ribosomal profiles are associated with a DeltaksgA genotype in E. coli. Our work also indicates that loss of KsgA alters 16S rRNA processing. These findings allow KsgAs role in SSU biogenesis to be integrated into the network of other identified factors. Moreover, a methyltransferase-inactive form of KsgA, which we show to be deleterious to cell growth, profoundly impairs ribosome biogenesis-prompting discussion of KsgA as a possible antimicrobial drug target. These unexpected data suggest that methylation is a second layer of function for KsgA and that its critical role is as a supervisor of biogenesis of SSUs in vivo. These new findings and this proposed regulatory role offer a mechanistic explanation for the extreme conservation of the KsgA/Dim1p enzyme family.
虽然核糖体生物合成的总体蓝图在进化上是保守的,但大多数细节已经有了很大的差异。这种差异的一个显著例外是普遍保守的KsgA/Dim1p酶家族,它修饰小亚基核糖体RNA(rRNA)末端螺旋中的两个相邻腺苷。虽然KsgA在30S亚基[小核糖体亚基(SSU)]上的定位以及遗传相互作用数据表明KsgA作为一种核糖体生物合成因子发挥作用,但仍缺乏其作用机制的细节及其极度保守性的原理。为了开始解决这些问题,我们使用ksgA缺失菌株和该蛋白的甲基转移酶缺陷形式在体内对大肠杆菌KsgA的功能进行了表征。我们的数据显示,冷敏感性和核糖体图谱的改变与大肠杆菌中的DeltaksgA基因型相关。我们的工作还表明,KsgA的缺失会改变16S rRNA的加工过程。这些发现使KsgA在SSU生物合成中的作用能够被整合到其他已确定因子的网络中。此外,我们发现无甲基转移酶活性的KsgA形式对细胞生长有害,会严重损害核糖体生物合成,这引发了关于KsgA作为一种可能的抗菌药物靶点的讨论。这些意外的数据表明,甲基化是KsgA的第二层功能,其关键作用是作为体内SSU生物合成的监督者。这些新发现和所提出的调节作用为KsgA/Dim1p酶家族的极度保守性提供了一种机制解释。