Suppr超能文献

对古老蛋白质KsgA核糖体生物合成功能的机制性洞察。

Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA.

作者信息

Connolly Keith, Rife Jason P, Culver Gloria

机构信息

Department of Biology, University of Rochester, Rochester, NY 14627, USA.

出版信息

Mol Microbiol. 2008 Dec;70(5):1062-75. doi: 10.1111/j.1365-2958.2008.06485.x.

Abstract

While the general blueprint of ribosome biogenesis is evolutionarily conserved, most details have diverged considerably. A striking exception to this divergence is the universally conserved KsgA/Dim1p enzyme family, which modifies two adjacent adenosines in the terminal helix of small subunit ribosomal RNA (rRNA). While localization of KsgA on 30S subunits [small ribosomal subunits (SSUs)] and genetic interaction data have suggested that KsgA acts as a ribosome biogenesis factor, mechanistic details and a rationale for its extreme conservation are still lacking. To begin to address these questions we have characterized the function of Escherichia coli KsgA in vivo using both a ksgA deletion strain and a methyltransferase-deficient form of this protein. Our data reveal cold sensitivity and altered ribosomal profiles are associated with a DeltaksgA genotype in E. coli. Our work also indicates that loss of KsgA alters 16S rRNA processing. These findings allow KsgAs role in SSU biogenesis to be integrated into the network of other identified factors. Moreover, a methyltransferase-inactive form of KsgA, which we show to be deleterious to cell growth, profoundly impairs ribosome biogenesis-prompting discussion of KsgA as a possible antimicrobial drug target. These unexpected data suggest that methylation is a second layer of function for KsgA and that its critical role is as a supervisor of biogenesis of SSUs in vivo. These new findings and this proposed regulatory role offer a mechanistic explanation for the extreme conservation of the KsgA/Dim1p enzyme family.

摘要

虽然核糖体生物合成的总体蓝图在进化上是保守的,但大多数细节已经有了很大的差异。这种差异的一个显著例外是普遍保守的KsgA/Dim1p酶家族,它修饰小亚基核糖体RNA(rRNA)末端螺旋中的两个相邻腺苷。虽然KsgA在30S亚基[小核糖体亚基(SSU)]上的定位以及遗传相互作用数据表明KsgA作为一种核糖体生物合成因子发挥作用,但仍缺乏其作用机制的细节及其极度保守性的原理。为了开始解决这些问题,我们使用ksgA缺失菌株和该蛋白的甲基转移酶缺陷形式在体内对大肠杆菌KsgA的功能进行了表征。我们的数据显示,冷敏感性和核糖体图谱的改变与大肠杆菌中的DeltaksgA基因型相关。我们的工作还表明,KsgA的缺失会改变16S rRNA的加工过程。这些发现使KsgA在SSU生物合成中的作用能够被整合到其他已确定因子的网络中。此外,我们发现无甲基转移酶活性的KsgA形式对细胞生长有害,会严重损害核糖体生物合成,这引发了关于KsgA作为一种可能的抗菌药物靶点的讨论。这些意外的数据表明,甲基化是KsgA的第二层功能,其关键作用是作为体内SSU生物合成的监督者。这些新发现和所提出的调节作用为KsgA/Dim1p酶家族的极度保守性提供了一种机制解释。

相似文献

1
Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA.
Mol Microbiol. 2008 Dec;70(5):1062-75. doi: 10.1111/j.1365-2958.2008.06485.x.
2
Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.
J Biol Chem. 2012 Mar 23;287(13):10453-10459. doi: 10.1074/jbc.M111.318121. Epub 2012 Feb 3.
3
Ribosome biogenesis; the KsgA protein throws a methyl-mediated switch in ribosome assembly.
Mol Microbiol. 2008 Dec;70(5):1051-3. doi: 10.1111/j.1365-2958.2008.06484.x.
4
Site-directed mutants of 16S rRNA reveal important RNA domains for KsgA function and 30S subunit assembly.
Biochemistry. 2011 Feb 8;50(5):854-63. doi: 10.1021/bi101005r. Epub 2011 Jan 11.
6
Overexpression of RbfA in the absence of the KsgA checkpoint results in impaired translation initiation.
Mol Microbiol. 2013 Mar;87(5):968-81. doi: 10.1111/mmi.12145. Epub 2013 Feb 6.
9
Structural basis of successive adenosine modifications by the conserved ribosomal methyltransferase KsgA.
Nucleic Acids Res. 2021 Jun 21;49(11):6389-6398. doi: 10.1093/nar/gkab430.
10
Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli.
J Mol Biol. 2018 Jun 8;430(12):1745-1759. doi: 10.1016/j.jmb.2018.04.009. Epub 2018 Apr 13.

引用本文的文献

3
TlyA is a 23S and 16S 2'-O-methylcytidine methyltransferase important for ribosome assembly in .
bioRxiv. 2025 Apr 25:2025.04.21.649808. doi: 10.1101/2025.04.21.649808.
4
c-di-GMP inhibits rRNA methylation and impairs ribosome assembly in the presence of kanamycin.
EMBO Rep. 2025 Mar;26(5):1367-1384. doi: 10.1038/s44319-025-00377-w. Epub 2025 Jan 27.
9
Application of bio-layer interferometry for the analysis of ribosome-protein interactions.
Front Mol Biosci. 2024 Aug 1;11:1398964. doi: 10.3389/fmolb.2024.1398964. eCollection 2024.
10
Implication of nucleotides near the 3' end of 16S rRNA in guarding the translational reading frame.
Nucleic Acids Res. 2024 Jun 10;52(10):5950-5958. doi: 10.1093/nar/gkae143.

本文引用的文献

1
A conserved rRNA methyltransferase regulates ribosome biogenesis.
Nat Struct Mol Biol. 2008 May;15(5):534-6. doi: 10.1038/nsmb.1408. Epub 2008 Apr 6.
2
Role of 16S ribosomal RNA methylations in translation initiation in Escherichia coli.
EMBO J. 2008 Mar 19;27(6):840-51. doi: 10.1038/emboj.2008.20. Epub 2008 Feb 21.
4
Dissection of 16S rRNA methyltransferase (KsgA) function in Escherichia coli.
J Bacteriol. 2007 Dec;189(23):8510-8. doi: 10.1128/JB.01259-07. Epub 2007 Sep 21.
5
Ribosome biogenesis and the translation process in Escherichia coli.
Microbiol Mol Biol Rev. 2007 Sep;71(3):477-94. doi: 10.1128/MMBR.00013-07.
6
Era and RbfA have overlapping function in ribosome biogenesis in Escherichia coli.
J Mol Microbiol Biotechnol. 2006;11(1-2):41-52. doi: 10.1159/000092818.
7
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
8
Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli.
J Mol Biol. 2004 May 28;339(2):337-53. doi: 10.1016/j.jmb.2004.02.068.
10
The DnaK chaperone system facilitates 30S ribosomal subunit assembly.
Mol Cell. 2002 Jul;10(1):129-38. doi: 10.1016/s1097-2765(02)00562-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验