Bertrand Julie, Comets Emmanuelle, Mentre France
UFR de Medecine-Site Bichat, UMR 738 INSERM Paris Diderot, Paris, France.
J Biopharm Stat. 2008;18(6):1084-102. doi: 10.1080/10543400802369012.
We evaluate by simulation three model-based methods to test the influence of a single nucleotide polymorphism on a pharmacokinetic parameter of a drug: analysis of variance (ANOVA) on the empirical Bayes estimates of the individual parameters, likelihood ratio test between models with and without genetic covariate, and Wald tests on the parameters of the model with covariate. Analyses are performed using the FO and FOCE method implemented in the NONMEM software. We compare several approaches for model selection based on tests and global criteria. We illustrate the results with pharmacokinetic data on indinavir from HIV-positive patients included in COPHAR 2-ANRS 111 to study the gene effect prospectively. Only the tests based on the EBE obtain an empirical type I error close to the expected 5%. The approximation made with the FO algorithm results in a significant inflation of the type I error of the LRT and Wald tests.
我们通过模拟评估了三种基于模型的方法,以测试单核苷酸多态性对药物药代动力学参数的影响:对个体参数的经验贝叶斯估计进行方差分析(ANOVA)、有和没有基因协变量的模型之间的似然比检验,以及对有协变量模型的参数进行 Wald 检验。使用 NONMEM 软件中实现的 FO 和 FOCE 方法进行分析。我们基于检验和全局标准比较了几种模型选择方法。我们用 COPHAR 2-ANRS 111 中纳入的 HIV 阳性患者的茚地那韦药代动力学数据来说明结果,以前瞻性地研究基因效应。只有基于经验贝叶斯估计(EBE)的检验获得了接近预期 5% 的经验性 I 型错误。FO 算法所做的近似导致似然比检验(LRT)和 Wald 检验的 I 型错误显著膨胀。