Watt Emily W, Bui Alex A T
University of California Los Angeles, Los Angeles, CA, USA.
AMIA Annu Symp Proc. 2008 Nov 6;2008:788-92.
The most common cause of disability in older adults in the United States is osteoarthritis. To address the problem of early disease prediction, we have constructed a Bayesian belief network (BBN) composed of knee OA-related symptoms to support prognostic queries. The purpose of this study is to evaluate a static and dynamic BBN--based on the NIH Osteoarthritis Initiative (OAI) data--in predicting the likelihood of a patient being diagnosed with knee OA. Initial validation results are promising: our model outperforms a logistic regression model in several designed studies. We can conclude that our model can effectively predict the symptoms that are commonly associated with the presence of knee OA.
在美国,老年人残疾的最常见原因是骨关节炎。为了解决疾病早期预测的问题,我们构建了一个由膝关节骨关节炎相关症状组成的贝叶斯信念网络(BBN),以支持预后查询。本研究的目的是评估一个基于美国国立卫生研究院骨关节炎计划(OAI)数据的静态和动态BBN,用于预测患者被诊断为膝关节骨关节炎的可能性。初步验证结果很有前景:在多项设计研究中,我们的模型优于逻辑回归模型。我们可以得出结论,我们的模型能够有效预测通常与膝关节骨关节炎存在相关的症状。