Suppr超能文献

利用骨关节炎倡议组织的数据,评估动态贝叶斯信念网络以预测骨关节炎性膝关节疼痛。

Evaluation of a dynamic bayesian belief network to predict osteoarthritic knee pain using data from the osteoarthritis initiative.

作者信息

Watt Emily W, Bui Alex A T

机构信息

University of California Los Angeles, Los Angeles, CA, USA.

出版信息

AMIA Annu Symp Proc. 2008 Nov 6;2008:788-92.

Abstract

The most common cause of disability in older adults in the United States is osteoarthritis. To address the problem of early disease prediction, we have constructed a Bayesian belief network (BBN) composed of knee OA-related symptoms to support prognostic queries. The purpose of this study is to evaluate a static and dynamic BBN--based on the NIH Osteoarthritis Initiative (OAI) data--in predicting the likelihood of a patient being diagnosed with knee OA. Initial validation results are promising: our model outperforms a logistic regression model in several designed studies. We can conclude that our model can effectively predict the symptoms that are commonly associated with the presence of knee OA.

摘要

在美国,老年人残疾的最常见原因是骨关节炎。为了解决疾病早期预测的问题,我们构建了一个由膝关节骨关节炎相关症状组成的贝叶斯信念网络(BBN),以支持预后查询。本研究的目的是评估一个基于美国国立卫生研究院骨关节炎计划(OAI)数据的静态和动态BBN,用于预测患者被诊断为膝关节骨关节炎的可能性。初步验证结果很有前景:在多项设计研究中,我们的模型优于逻辑回归模型。我们可以得出结论,我们的模型能够有效预测通常与膝关节骨关节炎存在相关的症状。

相似文献

2
Novel method of using dynamic electrical impedance signals for noninvasive diagnosis of knee osteoarthritis.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2207-10. doi: 10.1109/IEMBS.2006.260671.
3
Prognostic Bayesian networks I: rationale, learning procedure, and clinical use.
J Biomed Inform. 2007 Dec;40(6):609-18. doi: 10.1016/j.jbi.2007.07.003. Epub 2007 Jul 25.
4
The optimal diagnostic decision sequence.
AMIA Annu Symp Proc. 2008 Nov 6:902.
5
Fuzzy Naive Bayesian for constructing regulated network with weights.
Biomed Mater Eng. 2015;26 Suppl 1:S1757-62. doi: 10.3233/BME-151476.
6
Explicit evidence for prognostic Bayesian network models.
Stud Health Technol Inform. 2014;205:53-7.
7
Premature Ventricular beat classification using a dynamic Bayesian Network.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4984-7. doi: 10.1109/IEMBS.2011.6091235.
8
Predicting asthma exacerbations using artificial intelligence.
Stud Health Technol Inform. 2013;190:56-8.
10
Simple Scoring System and Artificial Neural Network for Knee Osteoarthritis Risk Prediction: A Cross-Sectional Study.
PLoS One. 2016 Feb 9;11(2):e0148724. doi: 10.1371/journal.pone.0148724. eCollection 2016.

引用本文的文献

1
Prediction Models for Knee Osteoarthritis: Review of Current Models and Future Directions.
Arch Bone Jt Surg. 2023;11(1):1-11. doi: 10.22038/ABJS.2022.58485.2897.
2
Risk factors and a Bayesian network model to predict ischemic stroke in patients with dilated cardiomyopathy.
Front Neurosci. 2022 Nov 9;16:1043922. doi: 10.3389/fnins.2022.1043922. eCollection 2022.
3
Use of machine learning in osteoarthritis research: a systematic literature review.
RMD Open. 2022 Mar;8(1). doi: 10.1136/rmdopen-2021-001998.
4
Using Sequential Decision Making to Improve Lung Cancer Screening Performance.
IEEE Access. 2019;7:119403-119419. doi: 10.1109/ACCESS.2019.2935763. Epub 2019 Aug 16.
6
Generating Reward Functions Using IRL Towards Individualized Cancer Screening.
Artif Intell Health (2018). 2019;11326:213-227. doi: 10.1007/978-3-030-12738-1_16. Epub 2019 Feb 21.
7
Identification of Knee Osteoarthritis Based on Bayesian Network: Pilot Study.
JMIR Med Inform. 2019 Jul 18;7(3):e13562. doi: 10.2196/13562.
10
Computer-based diagnostic expert systems in rheumatology: where do we stand in 2014?
Int J Rheumatol. 2014;2014:672714. doi: 10.1155/2014/672714. Epub 2014 Jul 8.

本文引用的文献

1
Computer-aided grading and quantification of hip osteoarthritis severity employing shape descriptors of radiographic hip joint space.
Comput Biol Med. 2007 Dec;37(12):1786-95. doi: 10.1016/j.compbiomed.2007.05.005. Epub 2007 Jul 10.
3
Two year longitudinal change and test-retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative.
Osteoarthritis Cartilage. 2007 Nov;15(11):1326-32. doi: 10.1016/j.joca.2007.04.007. Epub 2007 Jun 8.
5
Assessing hip osteoarthritis severity utilizing a probabilistic neural network based classification scheme.
Med Eng Phys. 2007 Mar;29(2):227-37. doi: 10.1016/j.medengphy.2006.03.003. Epub 2006 Apr 19.
6
Osteoarthritis, magnetic resonance imaging, and biochemical markers: a one year prospective study.
Ann Rheum Dis. 2006 Aug;65(8):1050-4. doi: 10.1136/ard.2005.045914. Epub 2006 Jan 5.
8
Bayesian networks in biomedicine and health-care.
Artif Intell Med. 2004 Mar;30(3):201-14. doi: 10.1016/j.artmed.2003.11.001.
9
Early diagnosis of osteoarthritis using cathepsin B sensitive near-infrared fluorescent probes.
Osteoarthritis Cartilage. 2004 Mar;12(3):239-44. doi: 10.1016/j.joca.2003.11.005.
10
A multi-agent intelligent environment for medical knowledge.
Artif Intell Med. 2003 Mar;27(3):335-66. doi: 10.1016/s0933-3657(03)00009-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验