Suppr超能文献

用于膝关节骨关节炎风险预测的简易评分系统和人工神经网络:一项横断面研究。

Simple Scoring System and Artificial Neural Network for Knee Osteoarthritis Risk Prediction: A Cross-Sectional Study.

作者信息

Yoo Tae Keun, Kim Deok Won, Choi Soo Beom, Oh Ein, Park Jee Soo

机构信息

Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea.

Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

PLoS One. 2016 Feb 9;11(2):e0148724. doi: 10.1371/journal.pone.0148724. eCollection 2016.

Abstract

BACKGROUND

Knee osteoarthritis (OA) is the most common joint disease of adults worldwide. Since the treatments for advanced radiographic knee OA are limited, clinicians face a significant challenge of identifying patients who are at high risk of OA in a timely and appropriate way. Therefore, we developed a simple self-assessment scoring system and an improved artificial neural network (ANN) model for knee OA.

METHODS

The Fifth Korea National Health and Nutrition Examination Surveys (KNHANES V-1) data were used to develop a scoring system and ANN for radiographic knee OA. A logistic regression analysis was used to determine the predictors of the scoring system. The ANN was constructed using 1777 participants and validated internally on 888 participants in the KNHANES V-1. The predictors of the scoring system were selected as the inputs of the ANN. External validation was performed using 4731 participants in the Osteoarthritis Initiative (OAI). Area under the curve (AUC) of the receiver operating characteristic was calculated to compare the prediction models.

RESULTS

The scoring system and ANN were built using the independent predictors including sex, age, body mass index, educational status, hypertension, moderate physical activity, and knee pain. In the internal validation, both scoring system and ANN predicted radiographic knee OA (AUC 0.73 versus 0.81, p<0.001) and symptomatic knee OA (AUC 0.88 versus 0.94, p<0.001) with good discriminative ability. In the external validation, both scoring system and ANN showed lower discriminative ability in predicting radiographic knee OA (AUC 0.62 versus 0.67, p<0.001) and symptomatic knee OA (AUC 0.70 versus 0.76, p<0.001).

CONCLUSIONS

The self-assessment scoring system may be useful for identifying the adults at high risk for knee OA. The performance of the scoring system is improved significantly by the ANN. We provided an ANN calculator to simply predict the knee OA risk.

摘要

背景

膝关节骨关节炎(OA)是全球成年人中最常见的关节疾病。由于晚期放射学膝关节OA的治疗方法有限,临床医生面临着及时、恰当地识别OA高危患者的重大挑战。因此,我们开发了一种简单的自我评估评分系统和一种改进的人工神经网络(ANN)模型用于膝关节OA。

方法

利用韩国第五次全国健康与营养检查调查(KNHANES V-1)数据开发放射学膝关节OA的评分系统和ANN。采用逻辑回归分析确定评分系统的预测因素。ANN由1777名参与者构建,并在KNHANES V-1的888名参与者中进行内部验证。评分系统的预测因素被选作ANN的输入。使用骨关节炎倡议(OAI)中的4731名参与者进行外部验证。计算受试者工作特征曲线下面积(AUC)以比较预测模型。

结果

评分系统和ANN使用包括性别、年龄、体重指数、教育状况、高血压、适度体育活动和膝关节疼痛等独立预测因素构建。在内部验证中,评分系统和ANN对放射学膝关节OA(AUC分别为0.73和0.81,p<0.001)和有症状膝关节OA(AUC分别为0.88和0.94,p<0.001)均具有良好的判别能力。在外部验证中,评分系统和ANN在预测放射学膝关节OA(AUC分别为0.62和0.67,p<0.001)和有症状膝关节OA(AUC分别为0.70和0.76,p<0.001)时判别能力较低。

结论

自我评估评分系统可能有助于识别膝关节OA高危成年人。ANN显著提高了评分系统的性能。我们提供了一个ANN计算器以简单预测膝关节OA风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/4747508/a49e3b7fb0eb/pone.0148724.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验