Gurarie V, Refael G, Chalker J T
Department of Physics, University of Colorado, Boulder, CO 80309, USA.
Phys Rev Lett. 2008 Oct 24;101(17):170407. doi: 10.1103/PhysRevLett.101.170407.
We examine bosons hopping on a one-dimensional lattice in the presence of a random potential at zero temperature. Bogoliubov excitations of the Bose-Einstein condensate formed under such conditions are localized, with the localization length diverging at low frequency as l(omega) approximately 1/omega(alpha). We show that the well-known result alpha=2 applies only for sufficiently weak random potential. As the random potential is increased beyond a certain strength, alpha starts decreasing. At a critical strength of the potential, when the system of bosons is at the transition from a superfluid to an insulator, alpha=1. This result is relevant for understanding the behavior of the atomic Bose-Einstein condensates in the presence of random potential, and of the disordered Josephson junction arrays.