Suppr超能文献

Turning loss into opportunity: the key deletion of an escape circuit in decapod crustaceans.

作者信息

Faulkes Zen

机构信息

Department of Biology, The University of Texas-Pan American, Edinburg, TX 78539, USA.

出版信息

Brain Behav Evol. 2008;72(4):251-61. doi: 10.1159/000171488. Epub 2008 Nov 12.

Abstract

Decapod crustacean escape responses are adaptive behaviors whose neural bases are well understood. The escape circuit is composed of giant neurons. Lateral giant interneurons (LGs) respond to posterior stimuli by generating a somersaulting tailflip; medial giant interneurons (MGs) respond to anterior stimuli with a backwards tailflip. Both sets of interneurons connect to giant fast flexor motor neurons (MoGs). Most features of the escape circuit are thought to result from strong selective pressure to respond to stimuli in the shortest possible time. Despite the apparent advantages of the escape circuit, it has been lost in multiple taxa independently. Some losses of the escape circuit may be rare cases of disaptation, where organisms are less well adapted than related species (i.e., those with the escape circuit). The losses of the escape circuit might be key deletions that promoted the radiation of decapod crustaceans by increasing selection pressure for species to evolve new anti-predator strategies and removing constraints against change.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验