Stern M, Ediger V L, Gibbon C R, Blagburn J M, Bacon J P
Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Falmer, Brighton, U.K.
J Neurobiol. 1997 Oct;33(4):439-58.
Neural regeneration in the escape circuit of the first-instar cockroach is described using behavioral analysis, electrophysiology, intracellular staining, and electron microscopy. Each of the two filiform hairs on each of the animal's cerci is innervated by a single sensory neuron, which specifically synapses with a set of giant interneurons (GIs) in the terminal ganglion. These trigger a directed escape run. Severing the sensory axons causes them to degenerate and perturbs escape behavior, which is restored to near normal after 4-6 days. Within this time, afferents regenerate and reestablish arborizations in the terminal ganglion. In most cases, regenerating afferents enter the cercal glomerulus and re-form most of the specific monosynaptic connections they acquired during embryogenesis, although their morphology deviates markedly from normal; these animals reestablish near normal escape behavior. In a few cases, regenerating afferents remain within the cercus or bypass the cercal glomerulus, and thereby fail to re-form synapses with GIs; these animals continue to exhibit perturbed escape behavior. We conclude that in most cases, specific synapses are reestablished and appropriate escape behavior is restored. This regeneration system therefore provides a tractable model for the establishment of synaptic specificity in a simple neuronal circuit.
利用行为分析、电生理学、细胞内染色和电子显微镜技术,对一龄蟑螂逃逸回路中的神经再生进行了描述。动物每个尾须上的两根丝状毛中的每一根都由单个感觉神经元支配,该感觉神经元与终末神经节中的一组巨中间神经元(GIs)特异性突触连接。这些巨中间神经元触发定向逃逸奔跑。切断感觉轴突会导致它们退化并扰乱逃逸行为,4-6天后逃逸行为恢复到接近正常水平。在此期间,传入神经再生并在终末神经节中重新建立分支。在大多数情况下,再生的传入神经进入尾须小球,并重新形成它们在胚胎发育过程中获得的大部分特定单突触连接,尽管它们的形态与正常情况明显不同;这些动物重新建立了接近正常的逃逸行为。在少数情况下,再生的传入神经留在尾须内或绕过尾须小球,因此无法与巨中间神经元重新形成突触;这些动物继续表现出受干扰的逃逸行为。我们得出结论,在大多数情况下,特定的突触得以重新建立,适当的逃逸行为得以恢复。因此,这个再生系统为在简单神经元回路中建立突触特异性提供了一个易于处理的模型。