Suppr超能文献

工程方法加速了 V1-V2 神经特性的计算理解。

Engineering-approach accelerates computational understanding of V1-V2 neural properties.

机构信息

Laboratory for Neuroinformatics, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan,

出版信息

Cogn Neurodyn. 2009 Mar;3(1):1-8. doi: 10.1007/s11571-008-9065-x. Epub 2008 Sep 26.

Abstract

We present two computational models (i) long-range horizontal connections and the nonlinear effect in V1 and (ii) the filling-in process at the blind spot. Both models are obtained deductively from standard regularization theory to show that physiological evidence of V1 and V2 neural properties is essential for efficient image processing. We stress that the engineering approach should be imported to understand visual systems computationally, even though this approach usually ignores physiological evidence and the target is neither neurons nor the brain.

摘要

我们提出了两个计算模型

(i)V1 中的长程水平连接和非线性效应,(ii)盲点处的填充过程。这两个模型都是从标准正则化理论中推导出来的,以表明 V1 和 V2 神经特性的生理证据对于有效的图像处理是必不可少的。我们强调,即使这种方法通常忽略生理证据,并且目标既不是神经元也不是大脑,也应该采用工程方法从计算角度理解视觉系统。

相似文献

2
Computational theory and applications of a filling-in process at the blind spot.盲点处填充过程的计算理论与应用
Neural Netw. 2008 Nov;21(9):1261-71. doi: 10.1016/j.neunet.2008.05.001. Epub 2008 May 15.

本文引用的文献

2
Robust anisotropic diffusion.稳健的各向异性扩散
IEEE Trans Image Process. 1998;7(3):421-32. doi: 10.1109/83.661192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验