Laboratory for Neuroinformatics, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan,
Cogn Neurodyn. 2009 Mar;3(1):1-8. doi: 10.1007/s11571-008-9065-x. Epub 2008 Sep 26.
We present two computational models (i) long-range horizontal connections and the nonlinear effect in V1 and (ii) the filling-in process at the blind spot. Both models are obtained deductively from standard regularization theory to show that physiological evidence of V1 and V2 neural properties is essential for efficient image processing. We stress that the engineering approach should be imported to understand visual systems computationally, even though this approach usually ignores physiological evidence and the target is neither neurons nor the brain.
(i)V1 中的长程水平连接和非线性效应,(ii)盲点处的填充过程。这两个模型都是从标准正则化理论中推导出来的,以表明 V1 和 V2 神经特性的生理证据对于有效的图像处理是必不可少的。我们强调,即使这种方法通常忽略生理证据,并且目标既不是神经元也不是大脑,也应该采用工程方法从计算角度理解视觉系统。