Suppr超能文献

利用递归神经网络模型中的混沌动力学对运动目标进行新型跟踪。

Novel tracking function of moving target using chaotic dynamics in a recurrent neural network model.

机构信息

Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama, 700-8530, Japan,

出版信息

Cogn Neurodyn. 2008 Mar;2(1):39-48. doi: 10.1007/s11571-007-9029-6. Epub 2007 Oct 9.

Abstract

Chaotic dynamics introduced in a recurrent neural network model is applied to controlling an object to track a moving target in two-dimensional space, which is set as an ill-posed problem. The motion increments of the object are determined by a group of motion functions calculated in real time with firing states of the neurons in the network. Several cyclic memory attractors that correspond to several simple motions of the object in two-dimensional space are embedded. Chaotic dynamics introduced in the network causes corresponding complex motions of the object in two-dimensional space. Adaptively real-time switching of control parameter results in constrained chaos (chaotic itinerancy) in the state space of the network and enables the object to track a moving target along a certain trajectory successfully. The performance of tracking is evaluated by calculating the success rate over 100 trials with respect to nine kinds of trajectories along which the target moves respectively. Computer experiments show that chaotic dynamics is useful to track a moving target. To understand the relations between these cases and chaotic dynamics, dynamical structure of chaotic dynamics is investigated from dynamical viewpoint.

摘要

将混沌动力学引入到一个递归神经网络模型中,用于控制一个物体在二维空间中跟踪一个移动目标,这被设定为一个不适定问题。物体的运动增量由一组运动函数决定,这些运动函数是根据网络中神经元的发射状态实时计算的。嵌入了几个与物体在二维空间中的几个简单运动相对应的循环记忆吸引子。网络中引入的混沌动力学导致物体在二维空间中产生相应的复杂运动。控制参数的自适应实时切换导致网络状态空间中的约束混沌(混沌遍历),使物体能够成功地沿着某个轨迹跟踪移动目标。通过对 100 次试验的成功率进行计算,评估了跟踪的性能,这些试验涉及目标分别沿着九种轨迹运动的情况。计算机实验表明,混沌动力学有助于跟踪移动目标。为了从动力学角度理解这些情况与混沌动力学之间的关系,从动力学角度研究了混沌动力学的结构。

相似文献

1
Novel tracking function of moving target using chaotic dynamics in a recurrent neural network model.
Cogn Neurodyn. 2008 Mar;2(1):39-48. doi: 10.1007/s11571-007-9029-6. Epub 2007 Oct 9.
2
A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model.
Neural Comput. 2004 Sep;16(9):1943-57. doi: 10.1162/0899766041336440.
3
Chaotic neural network applied to two-dimensional motion control.
Cogn Neurodyn. 2010 Mar;4(1):69-80. doi: 10.1007/s11571-009-9101-5. Epub 2009 Dec 11.
4
Application of chaos in a recurrent neural network to control in ill-posed problems: a novel autonomous robot arm.
Biol Cybern. 2018 Oct;112(5):495-508. doi: 10.1007/s00422-018-0775-9. Epub 2018 Aug 20.
8
Designing spontaneous behavioral switching via chaotic itinerancy.
Sci Adv. 2020 Nov 11;6(46). doi: 10.1126/sciadv.abb3989. Print 2020 Nov.
10
Controlling chaos in a chaotic neural network.
Neural Netw. 2003 Oct;16(8):1195-200. doi: 10.1016/S0893-6080(03)00055-8.

引用本文的文献

2
Deterministic convergence of chaos injection-based gradient method for training feedforward neural networks.
Cogn Neurodyn. 2015 Jun;9(3):331-40. doi: 10.1007/s11571-014-9323-z. Epub 2015 Jan 1.
3
Vague-to-crisp dynamics of percept formation modeled as operant (selectionist) process.
Cogn Neurodyn. 2014 Feb;8(1):71-80. doi: 10.1007/s11571-013-9262-0. Epub 2013 Aug 4.
4
Novelty-induced memory transmission between two nonequilibrium neural networks.
Cogn Neurodyn. 2013 Jun;7(3):225-36. doi: 10.1007/s11571-012-9231-z. Epub 2012 Dec 28.
6
Chaotic neural network applied to two-dimensional motion control.
Cogn Neurodyn. 2010 Mar;4(1):69-80. doi: 10.1007/s11571-009-9101-5. Epub 2009 Dec 11.

本文引用的文献

1
A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model.
Neural Comput. 2004 Sep;16(9):1943-57. doi: 10.1162/0899766041336440.
3
Chaotic itinerancy.
Chaos. 2003 Sep;13(3):926-36. doi: 10.1063/1.1607783.
5
Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems.
Behav Brain Sci. 2001 Oct;24(5):793-810; discussion 810-48. doi: 10.1017/s0140525x01000097.
6
Actions from thoughts.
Nature. 2001 Jan 18;409(6818):403-7. doi: 10.1038/35053191.
7
Real-time prediction of hand trajectory by ensembles of cortical neurons in primates.
Nature. 2000 Nov 16;408(6810):361-5. doi: 10.1038/35042582.
8
Low-dimensional chaos in an instance of epilepsy.
Proc Natl Acad Sci U S A. 1986 May;83(10):3513-7. doi: 10.1073/pnas.83.10.3513.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验