Suppr超能文献

在全同规则下,神经网络和元胞自动机中的混沌动力学的数值评估功能等价性。

Numerically evaluated functional equivalence between chaotic dynamics in neural networks and cellular automata under totalistic rules.

机构信息

Department of Electronic & Information System Engineering, The Graduate School of Natural Science & Technology, Okayama University, 700-8530, Okayama, Japan.

出版信息

Cogn Neurodyn. 2007 Sep;1(3):189-202. doi: 10.1007/s11571-006-9009-2. Epub 2006 Dec 7.

Abstract

Chaotic dynamics in a recurrent neural network model and in two-dimensional cellular automata, where both have finite but large degrees of freedom, are investigated from the viewpoint of harnessing chaos and are applied to motion control to indicate that both have potential capabilities for complex function control by simple rule(s). An important point is that chaotic dynamics generated in these two systems give us autonomous complex pattern dynamics itinerating through intermediate state points between embedded patterns (attractors) in high-dimensional state space. An application of these chaotic dynamics to complex controlling is proposed based on an idea that with the use of simple adaptive switching between a weakly chaotic regime and a strongly chaotic regime, complex problems can be solved. As an actual example, a two-dimensional maze, where it should be noted that the spatial structure of the maze is one of typical ill-posed problems, is solved with the use of chaos in both systems. Our computer simulations show that the success rate over 300 trials is much better, at least, than that of a random number generator. Our functional simulations indicate that both systems are almost equivalent from the viewpoint of functional aspects based on our idea, harnessing of chaos.

摘要

混沌动力学在递归神经网络模型和二维细胞自动机中都得到了研究,这两个模型都具有有限但自由度很大的特点,从利用混沌的角度进行了研究,并应用于运动控制,表明它们都具有通过简单规则控制复杂功能的潜力。一个重要的观点是,这两个系统中产生的混沌动力学为我们提供了自主的复杂模式动力学,这些动力学在高维状态空间中遍历嵌入模式(吸引子)之间的中间状态点。基于这样一种思想,即利用在弱混沌状态和强混沌状态之间的简单自适应切换,可以提出将这些混沌动力学应用于复杂控制的方法。作为一个实际的例子,我们使用这两个系统中的混沌来解决二维迷宫问题,需要注意的是,迷宫的空间结构是一个典型的不适定问题。我们的计算机模拟表明,在 300 多次试验中,成功率至少比随机数发生器要好得多。从我们的观点出发,基于功能方面的考虑,我们的功能模拟表明,这两个系统几乎是等效的,即利用混沌。

相似文献

2
Chaotic neural network applied to two-dimensional motion control.
Cogn Neurodyn. 2010 Mar;4(1):69-80. doi: 10.1007/s11571-009-9101-5. Epub 2009 Dec 11.
3
A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model.
Neural Comput. 2004 Sep;16(9):1943-57. doi: 10.1162/0899766041336440.
4
Application of chaos in a recurrent neural network to control in ill-posed problems: a novel autonomous robot arm.
Biol Cybern. 2018 Oct;112(5):495-508. doi: 10.1007/s00422-018-0775-9. Epub 2018 Aug 20.
5
Novel tracking function of moving target using chaotic dynamics in a recurrent neural network model.
Cogn Neurodyn. 2008 Mar;2(1):39-48. doi: 10.1007/s11571-007-9029-6. Epub 2007 Oct 9.
8
Time Series Analysis of the Sporulation Network Reveals Low Dimensional Chaotic Dynamics.
Front Microbiol. 2016 Nov 7;7:1760. doi: 10.3389/fmicb.2016.01760. eCollection 2016.
10
Lambda and the edge of chaos in recurrent neural networks.
Artif Life. 2015 Winter;21(1):55-71. doi: 10.1162/ARTL_a_00152. Epub 2014 Dec 16.

引用本文的文献

1
Chaotic neural network applied to two-dimensional motion control.
Cogn Neurodyn. 2010 Mar;4(1):69-80. doi: 10.1007/s11571-009-9101-5. Epub 2009 Dec 11.

本文引用的文献

1
A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model.
Neural Comput. 2004 Sep;16(9):1943-57. doi: 10.1162/0899766041336440.
2
Errorless reproduction of given pattern dynamics by means of cellular automata.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036707. doi: 10.1103/PhysRevE.68.036707. Epub 2003 Sep 29.
5
Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems.
Behav Brain Sci. 2001 Oct;24(5):793-810; discussion 810-48. doi: 10.1017/s0140525x01000097.
6
Actions from thoughts.
Nature. 2001 Jan 18;409(6818):403-7. doi: 10.1038/35053191.
7
Real-time prediction of hand trajectory by ensembles of cortical neurons in primates.
Nature. 2000 Nov 16;408(6810):361-5. doi: 10.1038/35042582.
8
Controlling chaos.
Phys Rev Lett. 1990 Mar 12;64(11):1196-1199. doi: 10.1103/PhysRevLett.64.1196.
9
Reafference and attractors in the olfactory system during odor recognition.
Int J Neural Syst. 1996 Sep;7(4):489-95. doi: 10.1142/s0129065796000476.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验