Smith-Kettlewell Eye Research Institute, 2318 Fillmore St., San Francisco, CA, 94115, USA,
Cogn Neurodyn. 2007 Mar;1(1):53-69. doi: 10.1007/s11571-006-9000-y. Epub 2006 Nov 25.
Cortical neurons receive signals from thousands of other neurons. The statistical properties of the input spike trains substantially shape the output response properties of each neuron. Experimental and theoretical investigations have mostly focused on the second order statistical features of the input spike trains (mean firing rates and pairwise correlations). Little is known of how higher order correlations affect the integration and firing behavior of a cell independently of the second order statistics. To address this issue, we simulated the dynamics of a population of 5000 neurons, controlling both their second order and higher-order correlation properties to reflect physiological data. We then used these ensemble dynamics as the input stage to morphologically reconstructed cortical cells (layer 5 pyramidal, layer 4 spiny stellate cell), and to an integrate and fire neuron. Our results show that changes done solely to the higher-order correlation properties of the network's dynamics significantly affect the response properties of a target neuron, both in terms of output rate and spike timing. Moreover, the neuronal morphology and voltage dependent mechanisms of the target neuron considerably modulate the quantitative aspects of these effects. Finally, we show how these results affect sparseness of neuronal representations, tuning properties, and feature selectivity of cortical cells.
皮质神经元从数千个其他神经元接收信号。输入尖峰列车的统计特性极大地影响了每个神经元的输出响应特性。实验和理论研究主要集中在输入尖峰列车的二阶统计特征(平均发放率和成对相关)上。对于高阶相关性如何独立于二阶统计影响细胞的整合和发放行为,知之甚少。为了解决这个问题,我们模拟了 5000 个神经元群体的动力学,控制它们的二阶和高阶相关特性以反映生理数据。然后,我们将这些整体动力学用作形态重建的皮质细胞(第 5 层锥体神经元、第 4 层棘状星形细胞)和积分和发放神经元的输入阶段。我们的结果表明,仅对网络动力学的高阶相关特性进行更改会显著影响目标神经元的响应特性,无论是在输出率还是在尖峰时间方面。此外,目标神经元的神经元形态和电压依赖性机制极大地调节了这些效应的定量方面。最后,我们展示了这些结果如何影响皮质细胞的神经元表示、调谐特性和特征选择性的稀疏性。