Suppr超能文献

表征神经编码的稀疏性。

Characterizing the sparseness of neural codes.

作者信息

Willmore B, Tolhurst D J

机构信息

Department of Physiology, University of Cambridge, UK.

出版信息

Network. 2001 Aug;12(3):255-70.

Abstract

It is often suggested that efficient neural codes for natural visual information should be 'sparse'. However, the term 'sparse' has been used in two different ways--firstly to describe codes in which few neurons are active at any time ('population sparseness'), and secondly to describe codes in which each neuron's lifetime response distribution has high kurtosis ('lifetime sparseness'). Although these ideas are related, they are not identical, and the most common measure of lifetime sparseness--the kurtosis of the lifetime response distributions of the neurons--provides no information about population sparseness. We have measured the population sparseness and lifetime kurtosis of several biologically inspired coding schemes. We used three measures of population sparseness (population kurtosis, Treves-Rolls sparseness and 'activity sparseness'), and found them to be in close agreement with one another. However, we also measured the lifetime kurtosis of the cells in each code. We found that lifetime kurtosis is uncorrelated with population sparseness for the codes we used. Lifetime kurtosis is not, therefore, a useful measure of the population sparseness of a code. Moreover, the Gabor-like codes, which are often assumed to have high population sparseness (since they have high lifetime kurtosis), actually turned out to have rather low population sparseness. Surprisingly, principal components filters produced the codes with the highest population sparseness.

摘要

人们常认为,用于自然视觉信息的高效神经编码应该是“稀疏的”。然而,“稀疏”一词有两种不同的用法——首先用于描述在任何时刻只有少数神经元活跃的编码(“群体稀疏性”),其次用于描述每个神经元的寿命响应分布具有高峰度的编码(“寿命稀疏性”)。尽管这些概念相关,但并不相同,而且寿命稀疏性最常用的衡量指标——神经元寿命响应分布的峰度——并未提供有关群体稀疏性的信息。我们测量了几种受生物启发的编码方案的群体稀疏性和寿命峰度。我们使用了三种群体稀疏性的衡量指标(群体峰度、Treves-Rolls稀疏性和“活动稀疏性”),发现它们彼此密切一致。然而,我们也测量了每种编码中细胞的寿命峰度。我们发现,对于我们使用的编码,寿命峰度与群体稀疏性不相关。因此,寿命峰度并不是衡量编码群体稀疏性的有用指标。此外,通常认为具有高群体稀疏性的类Gabor编码(因为它们具有高寿命峰度),实际上群体稀疏性相当低。令人惊讶的是,主成分滤波器产生的编码具有最高的群体稀疏性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验