Qureshi Asif, MacLeod Matthew, Scheringer Martin, Hungerbühler Konrad
Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich, Switzerland.
Environ Pollut. 2009 Feb;157(2):452-62. doi: 10.1016/j.envpol.2008.09.023. Epub 2008 Nov 12.
A mass balance model for mercury based on the fugacity concept is applied to Lake Superior, Lake Michigan, Onondaga Lake and Little Rock Lake to evaluate model performance, analyze cycling of three mercury species groups (elemental, divalent and methyl mercury), and identify important processes that determine the source-to-concentration relationship of the three mercury species groups in these lakes. This model application to four disparate ecosystems is an extension of previous applications of fugacity-based models describing mercury cycling. The model performs satisfactorily following site-specific parameterization, and provides an estimate of minimum rates of species interconversion that compare well with literature. Volatilization and sediment burial are the main processes removing mercury from the lakes, and uncertainty analyses indicate that air-water exchange of elemental mercury and water-sediment exchange of divalent mercury attached to particles are influential in governing mercury concentrations in water. Any new model application or field campaign to quantify mercury cycling in a lake should consider these processes as important.
基于逸度概念的汞质量平衡模型被应用于苏必利尔湖、密歇根湖、奥农达加湖和小石湖,以评估模型性能,分析三种汞物种组(元素汞、二价汞和甲基汞)的循环,并确定决定这些湖泊中三种汞物种组源与浓度关系的重要过程。该模型在四个不同生态系统中的应用是基于逸度的描述汞循环模型先前应用的扩展。经过特定地点参数化后,该模型表现令人满意,并提供了物种相互转化最小速率的估计值,与文献中的数据比较吻合。挥发和沉积物埋藏是从湖泊中去除汞的主要过程,不确定性分析表明,元素汞的气-水交换以及附着在颗粒上的二价汞的水-沉积物交换对控制水中汞浓度有影响。任何用于量化湖泊中汞循环的新模型应用或实地考察都应将这些过程视为重要因素。