Suppr超能文献

用广义功能连接注释蛋白质。

Annotating proteins with generalized functional linkages.

作者信息

Llewellyn Richard, Eisenberg David S

机构信息

Department of Energy Institute for Genomics and Proteomics, and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17700-5. doi: 10.1073/pnas.0809583105. Epub 2008 Nov 12.

Abstract

As genome sequencing outstrips the rate of high-quality, low-throughput biochemical and genetic experimentation, accurate annotation of protein function becomes a bottleneck in the progress of the biomolecular sciences. Most gene products are now annotated by homology, in which an experimentally determined function is applied to a similar sequence. This procedure becomes error-prone between more divergent sequences and can contaminate biomolecular databases. Here, we propose a computational method of assignment of function, termed Generalized Functional Linkages (GFL), that combines nonhomology-based methods with other types of data. Functional linkages describe pairwise relationships between proteins that work together to perform a biological task. GFL provides a Bayesian framework that improves annotation by arbitrating a competition among biological process annotations to best describe the target protein. GFL addresses the unequal strengths of functional linkages among proteins, the quality of existing annotations, and the similarity among them while incorporating available knowledge about the cellular location or individual molecular function of the target protein. We demonstrate GFL with functional linkages defined by an algorithm known as zorch that quantifies connectivity in protein-protein interaction networks. Even when using proteins linked only by indirect or high-throughput interactions, GFL predicts the biological processes of many proteins in Saccharomyces cerevisiae, improving the accuracy of annotation by 20% over majority voting.

摘要

随着基因组测序的速度超过了高质量、低通量的生化和基因实验的速度,蛋白质功能的准确注释成为生物分子科学发展的瓶颈。目前,大多数基因产物是通过同源性进行注释的,即将实验确定的功能应用于相似的序列。在差异较大的序列之间,这个过程容易出错,并且可能会污染生物分子数据库。在这里,我们提出了一种功能分配的计算方法,称为广义功能联系(GFL),它将基于非同源性的方法与其他类型的数据相结合。功能联系描述了共同执行生物任务的蛋白质之间的成对关系。GFL提供了一个贝叶斯框架,通过在生物过程注释之间进行竞争仲裁,以最佳地描述目标蛋白质,从而改进注释。GFL解决了蛋白质之间功能联系强度不均、现有注释的质量以及它们之间的相似性问题,同时纳入了关于目标蛋白质的细胞定位或单个分子功能的现有知识。我们用一种名为zorch的算法定义的功能联系来演示GFL,该算法量化蛋白质-蛋白质相互作用网络中的连通性。即使使用仅通过间接或高通量相互作用连接的蛋白质,GFL也能预测酿酒酵母中许多蛋白质的生物过程,比多数投票法的注释准确率提高了20%。

相似文献

1
Annotating proteins with generalized functional linkages.用广义功能连接注释蛋白质。
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17700-5. doi: 10.1073/pnas.0809583105. Epub 2008 Nov 12.
2
5
HFSP: high speed homology-driven function annotation of proteins.HFSP:高速同源驱动的蛋白质功能注释。
Bioinformatics. 2018 Jul 1;34(13):i304-i312. doi: 10.1093/bioinformatics/bty262.

引用本文的文献

本文引用的文献

1
Consistent probabilistic outputs for protein function prediction.蛋白质功能预测的一致概率输出。
Genome Biol. 2008;9 Suppl 1(Suppl 1):S6. doi: 10.1186/gb-2008-9-s1-s6. Epub 2008 Jun 27.
3
Predicting protein function from sequence and structure.从序列和结构预测蛋白质功能。
Nat Rev Mol Cell Biol. 2007 Dec;8(12):995-1005. doi: 10.1038/nrm2281.
4
Gene Ontology annotations at SGD: new data sources and annotation methods.SGD 中的基因本体注释:新数据源与注释方法
Nucleic Acids Res. 2008 Jan;36(Database issue):D577-81. doi: 10.1093/nar/gkm909. Epub 2007 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验