Suppr超能文献

对比丘脑单个和多个突触的γ-氨基丁酸能轴突终末的功能特性。

Contrasting the functional properties of GABAergic axon terminals with single and multiple synapses in the thalamus.

作者信息

Wanaverbecq Nicolas, Bodor Agnes L, Bokor Hajnalka, Slézia Andrea, Lüthi Anita, Acsády László

机构信息

Department of Neurovegetative Physiology, Centre de Recherche de Neurobiologie-Neurophysiologie de Marseille (CRN2M), CNRS-UMR 6231, University of Aix-Marseille II-III, 13397 Marseille Cedex 20, France.

出版信息

J Neurosci. 2008 Nov 12;28(46):11848-61. doi: 10.1523/JNEUROSCI.3183-08.2008.

Abstract

Diverse sources of GABAergic inhibition are a major feature of cortical networks, but distinct inhibitory input systems have not been systematically characterized in the thalamus. Here, we contrasted the properties of two independent GABAergic pathways in the posterior thalamic nucleus of rat, one input from the reticular thalamic nucleus (nRT), and one "extrareticular" input from the anterior pretectal nucleus (APT). The vast majority of nRT-thalamic terminals formed single synapses per postsynaptic target and innervated thin distal dendrites of relay cells. In contrast, single APT-thalamic terminals formed synaptic contacts exclusively via multiple, closely spaced synapses on thick relay cell dendrites. Quantal analysis demonstrated that the two inputs displayed comparable quantal amplitudes, release probabilities, and multiple release sites. The morphological and physiological data together indicated multiple, single-site contacts for nRT and multisite contacts for APT axons. The contrasting synaptic arrangements of the two pathways were paralleled by different short-term plasticities. The multisite APT-thalamic pathway showed larger charge transfer during 50-100 Hz stimulation compared with the nRT pathway and a greater persistent inhibition accruing during stimulation trains. Our results demonstrate that the two inhibitory systems are morpho-functionally distinct and suggest and that multisite GABAergic terminals are tailored for maintained synaptic inhibition even at high presynaptic firing rates. These data explain the efficacy of extrareticular inhibition in timing relay cell activity in sensory and motor thalamic nuclei. Finally, based on the classic nomenclature and the difference between reticular and extrareticular terminals, we define a novel, multisite GABAergic terminal type (F3) in the thalamus.

摘要

GABA能抑制的多种来源是皮层网络的一个主要特征,但不同的抑制性输入系统在丘脑中尚未得到系统的表征。在这里,我们对比了大鼠丘脑后核中两条独立的GABA能通路的特性,一条来自丘脑网状核(nRT)的输入,另一条来自前顶盖前核(APT)的“非网状”输入。绝大多数nRT-丘脑终末在每个突触后靶点形成单个突触,并支配中继细胞的细远端树突。相比之下,单个APT-丘脑终末仅通过在中继细胞粗树突上多个紧密间隔的突触形成突触接触。量子分析表明,这两种输入显示出相当的量子幅度、释放概率和多个释放位点。形态学和生理学数据共同表明,nRT的轴突有多个单位点接触,而APT的轴突有多位点接触。这两条通路截然不同的突触排列伴随着不同的短期可塑性。与nRT通路相比,多位点的APT-丘脑通路在50-100Hz刺激期间显示出更大的电荷转移,并且在刺激串期间积累了更大的持续抑制。我们的结果表明,这两种抑制系统在形态功能上是不同的,并表明多位点GABA能终末即使在高突触前发放率下也适合维持突触抑制。这些数据解释了非网状抑制在感觉和运动丘脑核中调节中继细胞活动的有效性。最后,基于经典命名法以及网状和非网状终末之间的差异,我们在丘脑中定义了一种新型的多位点GABA能终末类型(F3)。

相似文献

1
3
Selective GABAergic control of higher-order thalamic relays.
Neuron. 2005 Mar 24;45(6):929-40. doi: 10.1016/j.neuron.2005.01.048.
4
Selective GABAergic innervation of thalamic nuclei from zona incerta.
Eur J Neurosci. 2002 Sep;16(6):999-1014. doi: 10.1046/j.1460-9568.2002.02157.x.
5
Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway.
J Neurosci. 2008 Mar 19;28(12):3090-102. doi: 10.1523/JNEUROSCI.5266-07.2008.
9
Morphological Study of the Cortical and Thalamic Glutamatergic Synaptic Inputs of Striatal Parvalbumin Interneurons in Rats.
Neurochem Res. 2021 Jul;46(7):1659-1673. doi: 10.1007/s11064-021-03302-4. Epub 2021 Mar 26.

引用本文的文献

3
Structural plasticity of GABAergic and glutamatergic networks in the motor thalamus of parkinsonian monkeys.
J Comp Neurol. 2020 Jun;528(8):1436-1456. doi: 10.1002/cne.24834. Epub 2019 Dec 16.
4
Ultrastructural basis of strong unitary inhibition in a binaural neuron.
J Physiol. 2018 Oct;596(20):4969-4982. doi: 10.1113/JP276015. Epub 2018 Sep 2.
5
The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism.
Nat Neurosci. 2018 Jul;21(7):963-973. doi: 10.1038/s41593-018-0167-4. Epub 2018 Jun 18.
6
Tapping the Brakes: Cellular and Synaptic Mechanisms that Regulate Thalamic Oscillations.
Neuron. 2016 Nov 23;92(4):687-704. doi: 10.1016/j.neuron.2016.10.024.
7
Thalamic Inhibition: Diverse Sources, Diverse Scales.
Trends Neurosci. 2016 Oct;39(10):680-693. doi: 10.1016/j.tins.2016.08.001. Epub 2016 Aug 30.
8
Open-loop organization of thalamic reticular nucleus and dorsal thalamus: a computational model.
J Neurophysiol. 2015 Oct;114(4):2353-67. doi: 10.1152/jn.00926.2014. Epub 2015 Aug 19.
9
A subcortical inhibitory signal for behavioral arrest in the thalamus.
Nat Neurosci. 2015 Apr;18(4):562-568. doi: 10.1038/nn.3951. Epub 2015 Feb 23.

本文引用的文献

2
Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway.
J Neurosci. 2008 Mar 19;28(12):3090-102. doi: 10.1523/JNEUROSCI.5266-07.2008.
3
Developmental maturation of synaptic and extrasynaptic GABAA receptors in mouse thalamic ventrobasal neurones.
J Physiol. 2008 Feb 15;586(4):965-87. doi: 10.1113/jphysiol.2007.145375. Epub 2007 Dec 6.
7
Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses.
J Neurosci. 2006 Nov 29;26(48):12487-96. doi: 10.1523/JNEUROSCI.3106-06.2006.
9
Feedforward inhibitory control of sensory information in higher-order thalamic nuclei.
J Neurosci. 2005 Aug 17;25(33):7489-98. doi: 10.1523/JNEUROSCI.2301-05.2005.
10
Selective GABAergic control of higher-order thalamic relays.
Neuron. 2005 Mar 24;45(6):929-40. doi: 10.1016/j.neuron.2005.01.048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验