Wanaverbecq Nicolas, Bodor Agnes L, Bokor Hajnalka, Slézia Andrea, Lüthi Anita, Acsády László
Department of Neurovegetative Physiology, Centre de Recherche de Neurobiologie-Neurophysiologie de Marseille (CRN2M), CNRS-UMR 6231, University of Aix-Marseille II-III, 13397 Marseille Cedex 20, France.
J Neurosci. 2008 Nov 12;28(46):11848-61. doi: 10.1523/JNEUROSCI.3183-08.2008.
Diverse sources of GABAergic inhibition are a major feature of cortical networks, but distinct inhibitory input systems have not been systematically characterized in the thalamus. Here, we contrasted the properties of two independent GABAergic pathways in the posterior thalamic nucleus of rat, one input from the reticular thalamic nucleus (nRT), and one "extrareticular" input from the anterior pretectal nucleus (APT). The vast majority of nRT-thalamic terminals formed single synapses per postsynaptic target and innervated thin distal dendrites of relay cells. In contrast, single APT-thalamic terminals formed synaptic contacts exclusively via multiple, closely spaced synapses on thick relay cell dendrites. Quantal analysis demonstrated that the two inputs displayed comparable quantal amplitudes, release probabilities, and multiple release sites. The morphological and physiological data together indicated multiple, single-site contacts for nRT and multisite contacts for APT axons. The contrasting synaptic arrangements of the two pathways were paralleled by different short-term plasticities. The multisite APT-thalamic pathway showed larger charge transfer during 50-100 Hz stimulation compared with the nRT pathway and a greater persistent inhibition accruing during stimulation trains. Our results demonstrate that the two inhibitory systems are morpho-functionally distinct and suggest and that multisite GABAergic terminals are tailored for maintained synaptic inhibition even at high presynaptic firing rates. These data explain the efficacy of extrareticular inhibition in timing relay cell activity in sensory and motor thalamic nuclei. Finally, based on the classic nomenclature and the difference between reticular and extrareticular terminals, we define a novel, multisite GABAergic terminal type (F3) in the thalamus.
GABA能抑制的多种来源是皮层网络的一个主要特征,但不同的抑制性输入系统在丘脑中尚未得到系统的表征。在这里,我们对比了大鼠丘脑后核中两条独立的GABA能通路的特性,一条来自丘脑网状核(nRT)的输入,另一条来自前顶盖前核(APT)的“非网状”输入。绝大多数nRT-丘脑终末在每个突触后靶点形成单个突触,并支配中继细胞的细远端树突。相比之下,单个APT-丘脑终末仅通过在中继细胞粗树突上多个紧密间隔的突触形成突触接触。量子分析表明,这两种输入显示出相当的量子幅度、释放概率和多个释放位点。形态学和生理学数据共同表明,nRT的轴突有多个单位点接触,而APT的轴突有多位点接触。这两条通路截然不同的突触排列伴随着不同的短期可塑性。与nRT通路相比,多位点的APT-丘脑通路在50-100Hz刺激期间显示出更大的电荷转移,并且在刺激串期间积累了更大的持续抑制。我们的结果表明,这两种抑制系统在形态功能上是不同的,并表明多位点GABA能终末即使在高突触前发放率下也适合维持突触抑制。这些数据解释了非网状抑制在感觉和运动丘脑核中调节中继细胞活动的有效性。最后,基于经典命名法以及网状和非网状终末之间的差异,我们在丘脑中定义了一种新型的多位点GABA能终末类型(F3)。