Biró Agota A, Holderith Noémi B, Nusser Zoltan
Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary.
J Neurosci. 2006 Nov 29;26(48):12487-96. doi: 10.1523/JNEUROSCI.3106-06.2006.
The amount of neurotransmitter released after the arrival of an action potential affects the strength and the trial-to-trial variability of postsynaptic responses. Most studies examining the dependence of synaptic neurotransmitter concentration on the release probability (P(r)) have focused on glutamatergic synapses. Here we asked whether univesicular or multivesicular release characterizes transmission at hippocampal GABAergic synapses. We used multiple probability functional analysis to derive quantal parameters at inhibitory connections between cannabinoid receptor- and cholecystokinin (CCK)-expressing interneurons and CA3 pyramidal cells. After the recordings, the cells were visualized and reconstructed at the light-microscopic level, and the number of boutons mediating the IPSCs was determined using electron microscopy (EM). The number of active zones (AZs) per CCK-immunopositive bouton was determined from three-dimensional EM reconstructions, thus allowing the calculation of the total number of AZs for each pair. Our results reveal an approximate fivefold discrepancy between the numbers of functionally determined release sites (17.4 +/- 3.2) and structurally identified AZs (3.7 +/- 0.9). Channel modeling predicts that a fivefold to sevenfold increase in the peak synaptic GABA concentration is required for the fivefold enhancement of the postsynaptic responses. Kinetic analysis of the unitary IPSCs indicates that the increase in synaptic GABA concentration is most likely attributable to multivesicular release. This change in the synaptic GABA concentration transient together with extremely low postsynaptic receptor occupancy permits a P(r)-dependent scaling of the postsynaptic response generated at a single hippocampal GABAergic synaptic contact.
动作电位到达后释放的神经递质数量会影响突触后反应的强度以及每次试验间的变异性。大多数研究突触神经递质浓度对释放概率(P(r))依赖性的实验都集中在谷氨酸能突触上。在此,我们探究了海马体GABA能突触传递的特征是单囊泡释放还是多囊泡释放。我们运用多重概率功能分析来推导表达大麻素受体和胆囊收缩素(CCK)的中间神经元与CA3锥体细胞之间抑制性连接的量子参数。记录完成后,在光学显微镜水平对细胞进行可视化和重建,并使用电子显微镜(EM)确定介导抑制性突触后电流(IPSCs)的终扣数量。通过三维EM重建确定每个CCK免疫阳性终扣的活性区(AZs)数量,从而计算每对细胞的AZs总数。我们的结果显示,功能确定的释放位点数量(17.4 +/- 3.2)与结构鉴定的AZs数量(3.7 +/- 0.9)之间存在约五倍的差异。通道模型预测,突触后反应增强五倍需要突触GABA峰值浓度增加五至七倍。对单位IPSCs的动力学分析表明,突触GABA浓度增加很可能归因于多囊泡释放。这种突触GABA浓度的短暂变化以及极低的突触后受体占有率允许在单个海马体GABA能突触接触处产生的突触后反应进行依赖于P(r)的缩放。