文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

经验会在皮质回路中留下持久的结构痕迹。

Experience leaves a lasting structural trace in cortical circuits.

作者信息

Hofer Sonja B, Mrsic-Flogel Thomas D, Bonhoeffer Tobias, Hübener Mark

机构信息

Max Planck Institute of Neurobiology, D-82152 Martinsried, Germany.

出版信息

Nature. 2009 Jan 15;457(7227):313-7. doi: 10.1038/nature07487. Epub 2008 Nov 12.


DOI:10.1038/nature07487
PMID:19005470
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6485433/
Abstract

Sensory experiences exert a powerful influence on the function and future performance of neuronal circuits in the mammalian neocortex. Restructuring of synaptic connections is believed to be one mechanism by which cortical circuits store information about the sensory world. Excitatory synaptic structures, such as dendritic spines, are dynamic entities that remain sensitive to alteration of sensory input throughout life. It remains unclear, however, whether structural changes at the level of dendritic spines can outlast the original experience and thereby provide a morphological basis for long-term information storage. Here we follow spine dynamics on apical dendrites of pyramidal neurons in functionally defined regions of adult mouse visual cortex during plasticity of eye-specific responses induced by repeated closure of one eye (monocular deprivation). The first monocular deprivation episode doubled the rate of spine formation, thereby increasing spine density. This effect was specific to layer-5 cells located in binocular cortex, where most neurons increase their responsiveness to the non-deprived eye. Restoring binocular vision returned spine dynamics to baseline levels, but absolute spine density remained elevated and many monocular deprivation-induced spines persisted during this period of functional recovery. However, spine addition did not increase again when the same eye was closed for a second time. This absence of structural plasticity stands out against the robust changes of eye-specific responses that occur even faster after repeated deprivation. Thus, spines added during the first monocular deprivation experience may provide a structural basis for subsequent functional shifts. These results provide a strong link between functional plasticity and specific synaptic rearrangements, revealing a mechanism of how prior experiences could be stored in cortical circuits.

摘要

感觉体验对哺乳动物新皮层中神经回路的功能及未来表现具有强大影响。突触连接的重组被认为是皮层回路存储有关感觉世界信息的一种机制。兴奋性突触结构,如树突棘,是动态实体,在整个生命过程中对感觉输入的改变保持敏感。然而,尚不清楚树突棘水平的结构变化是否能在原始体验之后持续存在,从而为长期信息存储提供形态学基础。在此,我们追踪成年小鼠视觉皮层功能定义区域内锥体神经元顶树突上的树突棘动态变化,该变化发生在因单眼反复闭合(单眼剥夺)诱导的眼优势可塑性过程中。首次单眼剥夺事件使树突棘形成速率加倍,从而增加了树突棘密度。这种效应特定于位于双眼视皮层的第5层细胞,其中大多数神经元对未剥夺眼的反应性增强。恢复双眼视觉使树突棘动态变化回到基线水平,但绝对树突棘密度仍保持升高,并且许多单眼剥夺诱导的树突棘在功能恢复期间持续存在。然而,当同一只眼睛再次闭合时,树突棘增加并未再次出现。这种结构可塑性的缺失与反复剥夺后更快发生的眼优势反应的强烈变化形成鲜明对比。因此,首次单眼剥夺体验期间增加的树突棘可能为后续的功能转变提供结构基础。这些结果在功能可塑性与特定突触重排之间建立了紧密联系,揭示了先前体验如何存储在皮层回路中的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe7/6485433/9f5184187963/ukmss-2585-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe7/6485433/36228f17266a/ukmss-2585-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe7/6485433/2d5e6639ec3c/ukmss-2585-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe7/6485433/c30d19257253/ukmss-2585-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe7/6485433/9f5184187963/ukmss-2585-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe7/6485433/36228f17266a/ukmss-2585-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe7/6485433/2d5e6639ec3c/ukmss-2585-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe7/6485433/c30d19257253/ukmss-2585-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe7/6485433/9f5184187963/ukmss-2585-f0004.jpg

相似文献

[1]
Experience leaves a lasting structural trace in cortical circuits.

Nature. 2009-1-15

[2]
Pyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines.

Front Neural Circuits. 2017-6-19

[3]
Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation.

Proc Natl Acad Sci U S A. 2003-12-23

[4]
Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex.

Sci Rep. 2017-7-10

[5]
Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.

J Neurosci. 2017-7-5

[6]
Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex.

Proc Natl Acad Sci U S A. 2019-10-7

[7]
Early Sensory Loss Alters the Dendritic Branching and Spine Density of Supragranular Pyramidal Neurons in Rodent Primary Sensory Cortices.

Front Neural Circuits. 2019-9-25

[8]
Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation.

Neuron. 2004-12-16

[9]
Dual-Component Structural Plasticity Mediated by αCaMKII Autophosphorylation on Basal Dendrites of Cortical Layer 2/3 Neurones.

J Neurosci. 2020-1-30

[10]
Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.

J Neurosci. 2011-11-23

引用本文的文献

[1]
Developmental auditory deprivation in one ear impairs brainstem binaural processing and reduces spatial hearing acuity.

PLoS Biol. 2025-9-5

[2]
Advances in two-photon imaging for monitoring neural activity in behaving mice.

Front Neurosci. 2025-8-11

[3]
Temporal coding carries more stable cortical visual representations than firing rate over time.

Nat Commun. 2025-8-4

[4]
Comparative Neuroplasticity in Frontal- and Lateral-Eyed Mammals With Induced-Binocular Vision Dysfunction: Insights From Monocular Deprivation Models.

Eur J Neurosci. 2025-7

[5]
Temporal coding carries more stable cortical visual representations than firing rate over time.

bioRxiv. 2025-5-13

[6]
The primary somatosensory sensory cortex-basolateral amygdala pathway contributes to comorbid depression in spared nerve injury-induced neuropathic pain.

Sci Rep. 2025-4-21

[7]
The Dose-Dependent Effects of Fluorocitrate on the Metabolism and Activity of Astrocytes and Neurons.

Brain Sci. 2025-1-21

[8]
Prey capture learning drives critical period-specific plasticity in mouse binocular visual cortex.

bioRxiv. 2025-1-28

[9]
A synapse-specific refractory period for plasticity at individual dendritic spines.

Proc Natl Acad Sci U S A. 2025-1-14

[10]
Synapses and dendritic spines are eliminated in the primary visual cortex of mice subjected to chronic intraocular pressure elevation.

Neural Regen Res. 2026-3-1

本文引用的文献

[1]
Protracted synaptogenesis after activity-dependent spinogenesis in hippocampal neurons.

J Neurosci. 2007-7-25

[2]
Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.

Neuron. 2007-6-21

[3]
Monocular deprivation in adult mice alters visual acuity and single-unit activity.

Learn Mem. 2007-4-6

[4]
Do thin spines learn to be mushroom spines that remember?

Curr Opin Neurobiol. 2007-6

[5]
Area map of mouse visual cortex.

J Comp Neurol. 2007-5-20

[6]
Screening mouse vision with intrinsic signal optical imaging.

Eur J Neurosci. 2007-2

[7]
Spine growth precedes synapse formation in the adult neocortex in vivo.

Nat Neurosci. 2006-9

[8]
Experience-dependent and cell-type-specific spine growth in the neocortex.

Nature. 2006-6-22

[9]
Remodeling of synaptic structure in sensory cortical areas in vivo.

J Neurosci. 2006-3-15

[10]
Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation.

J Neurosci. 2006-2-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索