Suppr超能文献

不同皮层层中的锥体神经元表现出树突棘顶端的不同动态和可塑性。

Pyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines.

机构信息

Department of Molecular, Cell and Developmental Biology, University of CaliforniaSanta Cruz, CA, United States.

出版信息

Front Neural Circuits. 2017 Jun 19;11:43. doi: 10.3389/fncir.2017.00043. eCollection 2017.

Abstract

The mammalian cerebral cortex is typically organized in six layers containing multiple types of neurons, with pyramidal neurons (PNs) being the most abundant. PNs in different cortical layers have distinct morphology, physiology and functional roles in neural circuits. Therefore, their development and synaptic plasticity may also differ. Using transcranial two-photon microscopy, we followed the structural dynamics of dendritic spines on apical dendrites of layer (L) 2/3 and L5 PNs at different developmental stages. We show that the density and dynamics of spines are significantly higher in L2/3 PNs than L5 PNs in both adolescent (1 month old) and adult (4 months old) mice. While spine density of L5 PNs decreases during adolescent development due to a higher rate of spine elimination than formation, there is no net change in the spine density along apical dendrites of L2/3 PNs over this period. In addition, experiences exert differential impact on the dynamics of apical dendritic spines of PNs resided in different cortical layers. While motor skill learning promotes spine turnover on L5 PNs in the motor cortex, it does not change the spine dynamics on L2/3 PNs. In addition, neonatal sensory deprivation decreases the spine density of both L2/3 and L5 PNs, but leads to opposite changes in spine dynamics among these two populations of neurons in adolescence. In summary, our data reveal distinct dynamics and plasticity of apical dendritic spines on PNs in different layers in the living mouse cortex, which may arise from their distinct functional roles in cortical circuits.

摘要

哺乳动物大脑皮层通常组织为 6 层,包含多种类型的神经元,其中锥体神经元(PN)最为丰富。不同皮层层中的 PN 具有不同的形态、生理学和在神经回路中的功能作用。因此,它们的发育和突触可塑性也可能不同。使用颅外双光子显微镜,我们在不同发育阶段跟踪了 L2/3 和 L5 PN 顶树突上树突棘的结构动力学。我们表明,在青春期(1 个月大)和成年(4 个月大)小鼠中,L2/3 PN 上的棘密度和动力学明显高于 L5 PN。虽然 L5 PN 的棘密度在青春期发育期间由于形成的棘比消除的棘的速率更高而降低,但在这段时间内,L2/3 PN 的顶树突上的棘密度没有净变化。此外,经验对不同皮层层中 PN 顶树突棘的动力学产生了不同的影响。虽然运动技能学习促进了运动皮层中 L5 PN 上的棘翻转,但它不会改变 L2/3 PN 上的棘动力学。此外,新生儿感觉剥夺降低了 L2/3 和 L5 PN 的棘密度,但在青春期这两种神经元群体中导致了棘动力学的相反变化。总之,我们的数据揭示了不同皮层层中 PN 顶树突棘的不同动力学和可塑性,这可能源于它们在皮质回路中的不同功能作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d2/5474458/50725ff7fd0a/fncir-11-00043-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验