Fourmond Vincent, Burlat Bénédicte, Dementin Sébastien, Arnoux Pascal, Sabaty Monique, Boiry Séverine, Guigliarelli Bruno, Bertrand Patrick, Pignol David, Léger Christophe
Unité de Bioénergétique et Ingénierie des Protéines, IBSM, UPR 9036, CNRS, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France.
J Phys Chem B. 2008 Dec 4;112(48):15478-86. doi: 10.1021/jp807092y.
Enzymes of the DMSO reductase family use a mononuclear Mo-bis(molybdopterin) cofactor (MoCo) to catalyze a variety of oxo-transfer reactions. Much functional information on nitrate reductase, one of the most studied members of this family, has been gained from EPR spectroscopy, but this technique is not always conclusive because the signature of the MoCo is heterogeneous, and which signals correspond to active species is still unsure. We used site-directed mutagenesis, EPR and protein film voltammetry to demonstrate that the MoCo in R. sphaeroides periplasmic nitrate reductase (NapAB) is subject to an irreversible reductive activation process whose kinetics we precisely define. This activation quantitatively correlates with the disappearance of the so-called "Mo(V) high-g" EPR signal, but this reductive process is too slow to be part of the normal catalytic cycle. Therefore, in NapAB, this most intense and most commonly observed signature of the MoCo arises from a dead-end, inactive state that gives a catalytically competent species only after reduction. This activation proceeds, even without substrate, according to a reduction followed by an irreversible nonredox step, both of which are pH independent. An apparently similar process occurs in other nitrate reductases (both assimilatory and membrane bound), and this also recalls the redox cycling procedure, which activates periplasmic DMSO reductases and simplifies their spectroscopic signatures. Hence we propose that heterogeneity at the active site and reductive activation are common properties of enzymes from the DMSO reductase family. Regarding NapAB, the fact that we could detect no Mo EPR signal upon reoxidizing the fully reduced enzyme suggests that the catalytically active form of the Mo(V) is thermodynamically unstable, as is the case for other enzymes of the DMSO reductase family. Our original approach, which combines spectroscopy and protein film voltammetry, proves useful for discriminating the forms of the active site on the basis of their catalytic properties. This could be applied to other enzymes for which the question arises as to the catalytic relevance of certain long-lived, spectroscopically characterized species.
二甲基亚砜还原酶家族的酶利用单核钼 - 双(钼蝶呤)辅因子(钼辅因子)催化各种氧转移反应。关于硝酸还原酶(该家族中研究最多的成员之一)的许多功能信息已通过电子顺磁共振光谱法获得,但该技术并不总是具有决定性,因为钼辅因子的信号特征是异质的,并且哪些信号对应于活性物种仍不确定。我们使用定点诱变、电子顺磁共振和蛋白质膜伏安法来证明球形红细菌周质硝酸还原酶(NapAB)中的钼辅因子经历了不可逆的还原激活过程,我们精确地定义了其动力学。这种激活与所谓的“钼(V)高g”电子顺磁共振信号的消失定量相关,但这种还原过程太慢,无法成为正常催化循环的一部分。因此,在NapAB中,钼辅因子这种最强烈且最常观察到的信号特征来自一个终态、无活性的状态,该状态只有在还原后才产生具有催化活性的物种。即使没有底物,这种激活也会按照先还原然后是不可逆的非氧化还原步骤进行,这两个步骤均与pH无关。在其他硝酸还原酶(同化型和膜结合型)中也发生了明显类似的过程,这也让人想起氧化还原循环过程,该过程激活周质二甲基亚砜还原酶并简化其光谱特征。因此,我们提出活性位点的异质性和还原激活是二甲基亚砜还原酶家族酶的共同特性。关于NapAB,在将完全还原的酶再氧化时我们无法检测到钼电子顺磁共振信号这一事实表明,钼(V)的催化活性形式在热力学上是不稳定的,二甲基亚砜还原酶家族的其他酶也是如此。我们将光谱学和蛋白质膜伏安法相结合的原始方法被证明对于根据活性位点的催化特性来区分其形式很有用。这可以应用于其他存在某些长期存在、具有光谱特征的物种的催化相关性问题的酶。