Saracibar Amaia, Goldfield Evelyn M, Gray Stephen K
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
J Phys Chem A. 2008 Dec 11;112(49):12588-96. doi: 10.1021/jp805875p.
Six-dimensional wave packet calculations on an accurate potential energy surface are used to obtain the quantum mechanical capture (QM C) probabilities for CH + H(2) corresponding to a variety of total angular momenta and internal reactant states. Rate constant calculations are made feasible by employing a Monte Carlo based sampling procedure. The QM C probabilities alone are also used to estimate the high pressure CH + H(2) rate constants corresponding to stabilization or CH(3) formation. The rate constants for CH + H(2) --> CH(2) + H reaction in the low pressure limit are obtained by combining the QM C probabilities with a phase space theory (PST) approximation for product formation from the complex. Our results are compared with the experimental results of Brownsword et al. (J. Chem. Phys. 1997, 106, 7662), as well as with purely classical PST calculations. The QM C probabilities are shown to be highly dependent on the initial rotational states of the reactants corresponding to orientational restrictions on complex formation. Consistent with this, our QM C high pressure rate constants for CH(3) formation are lower than the purely classical PST rate constants. These QM C rate constants also are in reasonable accord with experiment. A similar but somewhat more subtle picture emerges regarding the QM C/PST rate constants for CH(2) + H formation.
在精确的势能面上进行六维波包计算,以获得对应于各种总角动量和反应物内部状态的CH + H₂的量子力学俘获(QM C)概率。通过采用基于蒙特卡罗的采样程序,使速率常数计算变得可行。单独的QM C概率也用于估计对应于稳定化或CH₃形成的高压CH + H₂速率常数。通过将QM C概率与用于从复合物形成产物的相空间理论(PST)近似相结合,获得低压极限下CH + H₂→CH₂ + H反应的速率常数。我们的结果与Brownsword等人(《化学物理杂志》,1997年,106卷,7662页)的实验结果以及纯经典PST计算结果进行了比较。结果表明,QM C概率高度依赖于反应物的初始转动状态,这对应于复合物形成时的取向限制。与此一致的是,我们计算得到的CH₃形成的QM C高压速率常数低于纯经典PST速率常数。这些QM C速率常数也与实验结果合理相符。关于CH₂ + H形成的QM C/PST速率常数,也出现了类似但更为微妙的情况。