Suppr超能文献

使用基于神经网络的用户档案进行自适应眼动追踪,以帮助行动不便的人。

Adaptive eye-gaze tracking using neural-network-based user profiles to assist people with motor disability.

作者信息

Sesin Anaelis, Adjouadi Malek, Cabrerizo Mercedes, Ayala Melvin, Barreto Armando

机构信息

Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA.

出版信息

J Rehabil Res Dev. 2008;45(6):801-17. doi: 10.1682/jrrd.2007.05.0075.

Abstract

This study developed an adaptive real-time human-computer interface (HCI) that serves as an assistive technology tool for people with severe motor disability. The proposed HCI design uses eye gaze as the primary computer input device. Controlling the mouse cursor with raw eye coordinates results in sporadic motion of the pointer because of the saccadic nature of the eye. Even though eye movements are subtle and completely imperceptible under normal circumstances, they considerably affect the accuracy of an eye-gaze-based HCI. The proposed HCI system is novel because it adapts to each specific user's different and potentially changing jitter characteristics through the configuration and training of an artificial neural network (ANN) that is structured to minimize the mouse jitter. This task is based on feeding the ANN a user's initially recorded eye-gaze behavior through a short training session. The ANN finds the relationship between the gaze coordinates and the mouse cursor position based on the multilayer perceptron model. An embedded graphical interface is used during the training session to generate user profiles that make up these unique ANN configurations. The results with 12 subjects in test 1, which involved following a moving target, showed an average jitter reduction of 35%; the results with 9 subjects in test 2, which involved following the contour of a square object, showed an average jitter reduction of 53%. For both results, the outcomes led to trajectories that were significantly smoother and apt at reaching fixed or moving targets with relative ease and within a 5% error margin or deviation from desired trajectories. The positive effects of such jitter reduction are presented graphically for visual appreciation.

摘要

本研究开发了一种自适应实时人机界面(HCI),作为严重运动障碍患者的辅助技术工具。所提出的HCI设计使用眼睛注视作为主要的计算机输入设备。由于眼睛的扫视特性,用原始眼睛坐标控制鼠标光标会导致指针的零星移动。尽管眼睛运动在正常情况下很细微且完全难以察觉,但它们会显著影响基于眼睛注视的HCI的准确性。所提出的HCI系统具有创新性,因为它通过配置和训练人工神经网络(ANN)来适应每个特定用户不同且可能变化的抖动特性,该人工神经网络的结构旨在最小化鼠标抖动。此任务基于通过短训练课程向ANN输入用户最初记录的眼睛注视行为。ANN基于多层感知器模型找到注视坐标与鼠标光标位置之间的关系。在训练过程中使用嵌入式图形界面来生成构成这些独特ANN配置的用户配置文件。在测试1中,12名受试者跟踪移动目标的结果显示平均抖动减少了35%;在测试2中,9名受试者跟踪方形物体轮廓 的结果显示平均抖动减少了53%。对于这两个结果,结果导致的轨迹明显更平滑,并且能够相对轻松地到达固定或移动目标,误差幅度或与期望轨迹的偏差在5%以内。通过图形展示了这种抖动减少的积极效果,以便直观地欣赏。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验