Suppr超能文献

糖皮质激素受体的混合模型定量构效关系:预测精神药物的结合模式和亲和力。

Mixed-model QSAR at the glucocorticoid receptor: predicting the binding mode and affinity of psychotropic drugs.

作者信息

Spreafico Morena, Ernst Beat, Lill Markus A, Smiesko Martin, Vedani Angelo

机构信息

Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.

出版信息

ChemMedChem. 2009 Jan;4(1):100-9. doi: 10.1002/cmdc.200800274.

Abstract

The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily that affects immune response, development, and metabolism in target tissues. Glucocorticoids are widely used to treat diverse pathophysiological conditions, but their clinical applicability is limited by side effects. A prediction of the binding affinity toward the GR would be beneficial for identifying glucocorticoid-mediated adverse effects triggered by drugs or chemicals. By identifying the binding mode to the GR using flexible docking (software Yeti) and quantifying the binding affinity through multidimensional QSAR (software Quasar), we validated a model family based on 110 compounds, representing four different chemical classes. The correlation with the experimental data (cross-validated r(2)=0.702; predictive r(2)=0.719) suggests that our approach is suited for predicting the binding affinity of related compounds toward the GR. After challenging the model by a series of scramble tests, a consensus approach (software Raptor), and a prediction set, it was incorporated into our VirtualToxLab and used to simulate and quantify the interaction of 24 psychotropic drugs with the GR.

摘要

糖皮质激素受体(GR)是核受体超家族的成员,可影响靶组织中的免疫反应、发育和代谢。糖皮质激素被广泛用于治疗各种病理生理状况,但其临床适用性受到副作用的限制。预测对GR的结合亲和力将有助于识别由药物或化学物质引发的糖皮质激素介导的不良反应。通过使用灵活对接(软件Yeti)确定与GR的结合模式,并通过多维定量构效关系(软件Quasar)量化结合亲和力,我们基于110种代表四种不同化学类别的化合物验证了一个模型家族。与实验数据的相关性(交叉验证r² = 0.702;预测r² = 0.719)表明我们的方法适用于预测相关化合物对GR的结合亲和力。在通过一系列随机测试、共识方法(软件Raptor)和预测集对模型进行挑战后,它被纳入我们的虚拟毒理学实验室,并用于模拟和量化24种精神药物与GR的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验