Suppr超能文献

通过多维机器学习和分子动力学模拟对NBTI抗菌剂针对DNA旋转酶的动态分析和结合亲和力预测

Dynamic Profiling and Binding Affinity Prediction of NBTI Antibacterials against DNA Gyrase Enzyme by Multidimensional Machine Learning and Molecular Dynamics Simulations.

作者信息

Kokot Maja, Minovski Nikola

机构信息

Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.

The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.

出版信息

ACS Omega. 2024 Apr 11;9(16):18278-18295. doi: 10.1021/acsomega.4c00036. eCollection 2024 Apr 23.

Abstract

Bacterial type II topoisomerases are well-characterized and clinically important targets for antibacterial chemotherapy. Novel bacterial topoisomerase inhibitors (NBTIs) are a newly disclosed class of antibacterials. Prediction of their binding affinity to these enzymes would be beneficial for design/optimization of new NBTIs. Utilizing NBTI experimental data, we constructed two comprehensive multidimensional DNA gyrase surrogate models for ( = 0.791) and ( = 0.806). Both models accurately predicted the ICs of 26 NBTIs from our recent studies. To investigate the NBTI's dynamic profile and binding to both targets, 10 selected NBTIs underwent molecular dynamics (MD) simulations. The analysis of MD production trajectories confirmed key hydrogen-bonding and hydrophobic contacts that NBTIs establish in both enzymes. Moreover, the binding free energies of selected NBTIs were computed by the linear interaction energy (LIE) method employing an in-house derived set of fitting parameters (α = 0.16, β = 0.029, γ = 0.0, and intercept = -1.72), which are successfully applicable to DNA gyrase of Gram-positive/Gram-negative pathogens. Both methods offer accurate predictions of the binding free energies of NBTIs against and DNA gyrase. We are confident that this integrated modeling approach could be valuable in the design and optimization of efficient NBTIs for combating resistant bacterial pathogens.

摘要

细菌II型拓扑异构酶是特征明确且在抗菌化疗中具有重要临床意义的靶点。新型细菌拓扑异构酶抑制剂(NBTIs)是一类新披露的抗菌药物。预测它们与这些酶的结合亲和力将有助于新型NBTIs的设计/优化。利用NBTI实验数据,我们构建了两个综合多维DNA促旋酶替代模型,其相关系数分别为( = 0.791)和( = 0.806)。两个模型都准确预测了我们近期研究中26种NBTIs的半数抑制浓度(ICs)。为了研究NBTI的动态特征及其与两个靶点的结合情况,对10种选定的NBTIs进行了分子动力学(MD)模拟。MD模拟生成轨迹的分析证实了NBTIs在两种酶中形成的关键氢键和疏水相互作用。此外,采用内部推导的一组拟合参数(α = 0.16,β = 0.029,γ = 0.0,截距 = -1.72),通过线性相互作用能(LIE)方法计算了选定NBTIs的结合自由能,这些参数成功应用于革兰氏阳性/革兰氏阴性病原体的DNA促旋酶。两种方法都能准确预测NBTIs对 和DNA促旋酶的结合自由能。我们相信,这种综合建模方法在设计和优化对抗耐药细菌病原体的高效NBTIs方面可能具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e5/11044241/957626c51d98/ao4c00036_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验