Suppr超能文献

由模板化构象变化指定的野生型 Tau 原纤维的构象多样性。

Conformational diversity of wild-type Tau fibrils specified by templated conformation change.

作者信息

Frost Bess, Ollesch Julian, Wille Holger, Diamond Marc I

机构信息

Department of Neurology, University of California, San Francisco, California 94158, USA.

出版信息

J Biol Chem. 2009 Feb 6;284(6):3546-51. doi: 10.1074/jbc.M805627200. Epub 2008 Nov 14.

Abstract

Tauopathies are sporadic and genetic neurodegenerative diseases characterized by aggregation of the microtubule-associated protein Tau. Tau pathology occurs in over 20 phenotypically distinct neurodegenerative diseases, including Alzheimer disease and frontotemporal dementia. The molecular basis of this diversity among sporadic tauopathies is unknown, but distinct fibrillar wild-type (WT) Tau conformations could play a role. Using Fourier transform infrared spectroscopy, circular dichroism, and electron microscopy, we show that WT Tau fibrils and P301L/V337M Tau fibrils have distinct secondary structures, fragilities, and morphologies. Furthermore, P301L/V337M fibrillar seeds induce WT Tau monomer to form a novel fibrillar conformation, termed WT*, that is maintained over multiple seeding reactions. WT* has secondary structure, fragility, and morphology that are similar to P301L/V337M fibrils and distinct from WT fibrils. WT Tau is thus capable of conformational diversity that arises via templated conformation change, as has been described for amyloid beta, beta2-microglobulin, and prion proteins.

摘要

tau蛋白病是散发性和遗传性神经退行性疾病,其特征是微管相关蛋白Tau发生聚集。Tau病理出现在20多种表型不同的神经退行性疾病中,包括阿尔茨海默病和额颞叶痴呆。散发性tau蛋白病之间这种多样性的分子基础尚不清楚,但不同的纤维状野生型(WT)Tau构象可能起作用。使用傅里叶变换红外光谱、圆二色性和电子显微镜,我们表明WT Tau纤维和P301L/V337M Tau纤维具有不同的二级结构、脆性和形态。此外,P301L/V337M纤维状种子诱导WT Tau单体形成一种新的纤维状构象,称为WT*,这种构象在多次种子反应中得以维持。WT*具有与P301L/V337M纤维相似且与WT纤维不同的二级结构、脆性和形态。因此,WT Tau能够通过模板化构象变化产生构象多样性,正如淀粉样β蛋白、β2-微球蛋白和朊病毒蛋白所描述的那样。

相似文献

1
Conformational diversity of wild-type Tau fibrils specified by templated conformation change.
J Biol Chem. 2009 Feb 6;284(6):3546-51. doi: 10.1074/jbc.M805627200. Epub 2008 Nov 14.
2
Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms.
J Biol Chem. 2018 Nov 9;293(45):17336-17348. doi: 10.1074/jbc.RA118.005316. Epub 2018 Sep 21.
6
Fibrillization of human tau is accelerated by exposure to lead via interaction with His-330 and His-362.
PLoS One. 2011;6(9):e25020. doi: 10.1371/journal.pone.0025020. Epub 2011 Sep 26.
8
Amyloidogenesis of Tau protein.
Protein Sci. 2017 Nov;26(11):2126-2150. doi: 10.1002/pro.3275. Epub 2017 Sep 13.
9
Distinct differences in prion-like seeding and aggregation between Tau protein variants provide mechanistic insights into tauopathies.
J Biol Chem. 2018 Feb 16;293(7):2408-2421. doi: 10.1074/jbc.M117.815357. Epub 2017 Dec 19.
10
Alpha-helix structure in Alzheimer's disease aggregates of tau-protein.
Biochemistry. 2002 Jun 4;41(22):7150-5. doi: 10.1021/bi025777e.

引用本文的文献

2
Back to the Future: Predicting Individual Tau Progression in Alzheimer's Disease.
Res Sq. 2025 Jun 19:rs.3.rs-6772220. doi: 10.21203/rs.3.rs-6772220/v1.
4
Inhibition of tau aggregation by the CCT3 and CCT7 apical domains.
Protein Sci. 2025 Jun;34(6):e70162. doi: 10.1002/pro.70162.
5
Cellular and pathological functions of tau.
Nat Rev Mol Cell Biol. 2024 Nov;25(11):845-864. doi: 10.1038/s41580-024-00753-9. Epub 2024 Jul 16.
6
Novel ultrasensitive immunoassay for the selective quantification of tau oligomers and related soluble aggregates.
Alzheimers Dement. 2024 Apr;20(4):2894-2905. doi: 10.1002/alz.13711. Epub 2024 Mar 23.
7
Disease-Associated Mutations in Tau Encode for Changes in Aggregate Structure Conformation.
ACS Chem Neurosci. 2023 Dec 20;14(24):4282-4297. doi: 10.1021/acschemneuro.3c00422. Epub 2023 Dec 6.
8
β-Bracelets: Macrocyclic Cross-β Epitope Mimics Based on a Tau Conformational Strain.
J Am Chem Soc. 2023 Oct 25;145(42):23131-23142. doi: 10.1021/jacs.3c06830. Epub 2023 Oct 16.
9
Frontotemporal lobar degeneration.
Nat Rev Dis Primers. 2023 Aug 10;9(1):40. doi: 10.1038/s41572-023-00447-0.

本文引用的文献

1
Secondary structure and distribution of fusogenic LV-peptides in lipid membranes.
Eur Biophys J. 2008 Apr;37(4):435-45. doi: 10.1007/s00249-007-0233-4. Epub 2007 Nov 24.
2
Prion protein alpha-to-beta transition monitored by time-resolved Fourier transform infrared spectroscopy.
Appl Spectrosc. 2007 Oct;61(10):1025-31. doi: 10.1366/000370207782217680.
3
Electron crystallography of the scrapie prion protein complexed with heavy metals.
Arch Biochem Biophys. 2007 Nov 15;467(2):239-48. doi: 10.1016/j.abb.2007.08.010. Epub 2007 Aug 23.
4
Fibrillogenic nuclei composed of P301L mutant tau induce elongation of P301L tau but not wild-type tau.
J Biol Chem. 2007 Jul 13;282(28):20309-18. doi: 10.1074/jbc.M611876200. Epub 2007 May 25.
5
Flow-induced alignment of amyloid protofilaments revealed by linear dichroism.
J Biol Chem. 2007 Mar 23;282(12):8978-83. doi: 10.1074/jbc.M611738200. Epub 2007 Jan 29.
6
Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes.
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19105-10. doi: 10.1073/pnas.0608970103. Epub 2006 Dec 1.
7
The physical basis of how prion conformations determine strain phenotypes.
Nature. 2006 Aug 3;442(7102):585-9. doi: 10.1038/nature04922. Epub 2006 Jun 28.
8
Seeding-dependent propagation and maturation of amyloid fibril conformation.
J Mol Biol. 2005 Sep 30;352(4):952-60. doi: 10.1016/j.jmb.2005.07.061.
9
Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils.
Science. 2005 Jan 14;307(5707):262-5. doi: 10.1126/science.1105850.
10
De novo design of conformationally flexible transmembrane peptides driving membrane fusion.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14776-81. doi: 10.1073/pnas.0405175101. Epub 2004 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验