Suppr超能文献

错误预防氧化鸟嘌呤系统中的缺陷增强了枯草芽孢杆菌的稳定期诱变作用。

Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis.

作者信息

Vidales Luz E, Cárdenas Lluvia C, Robleto Eduardo, Yasbin Ronald E, Pedraza-Reyes Mario

机构信息

Department of Biology, University of Guanajuato, P.O. Box 187, Guanajuato, Gto. 36050 MEXICO.

出版信息

J Bacteriol. 2009 Jan;191(2):506-13. doi: 10.1128/JB.01210-08. Epub 2008 Nov 14.

Abstract

Previous studies showed that a Bacillus subtilis strain deficient in mismatch repair (MMR; encoded by the mutSL operon) promoted the production of stationary-phase-induced mutations. However, overexpression of the mutSL operon did not completely suppress this process, suggesting that additional DNA repair mechanisms are involved in the generation of stationary-phase-associated mutants in this bacterium. In agreement with this hypothesis, the results presented in this work revealed that starved B. subtilis cells lacking a functional error prevention GO (8-oxo-G) system (composed of YtkD, MutM, and YfhQ) had a dramatic propensity to increase the number of stationary-phase-induced revertants. These results strongly suggest that the occurrence of mutations is exacerbated by reactive oxygen species in nondividing cells of B. subtilis having an inactive GO system. Interestingly, overexpression of the MMR system significantly diminished the accumulation of mutations in cells deficient in the GO repair system during stationary phase. These results suggest that the MMR system plays a general role in correcting base mispairing induced by oxidative stress during stationary phase. Thus, the absence or depression of both the MMR and GO systems contributes to the production of stationary-phase mutants in B. subtilis. In conclusion, our results support the idea that oxidative stress is a mechanism that generates genetic diversity in starved cells of B. subtilis, promoting stationary-phase-induced mutagenesis in this soil microorganism.

摘要

先前的研究表明,一株缺乏错配修复(MMR;由mutSL操纵子编码)的枯草芽孢杆菌菌株会促进稳定期诱导突变的产生。然而,mutSL操纵子的过表达并未完全抑制这一过程,这表明在这种细菌中,其他DNA修复机制也参与了稳定期相关突变体的产生。与这一假设一致,本研究呈现的结果显示,缺乏功能性错误预防GO(8-氧代鸟嘌呤)系统(由YtkD、MutM和YfhQ组成)的饥饿枯草芽孢杆菌细胞极有可能增加稳定期诱导回复突变体的数量。这些结果有力地表明,在具有失活GO系统的枯草芽孢杆菌非分裂细胞中,活性氧会加剧突变的发生。有趣的是,MMR系统的过表达显著减少了稳定期GO修复系统缺陷细胞中突变的积累。这些结果表明,MMR系统在纠正稳定期氧化应激诱导的碱基错配中发挥着普遍作用。因此,MMR和GO系统的缺失或抑制都有助于枯草芽孢杆菌中稳定期突变体的产生。总之,我们的结果支持这样一种观点,即氧化应激是一种在饥饿的枯草芽孢杆菌细胞中产生遗传多样性的机制,促进了这种土壤微生物中稳定期诱导的诱变作用。

相似文献

1
Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis.
J Bacteriol. 2009 Jan;191(2):506-13. doi: 10.1128/JB.01210-08. Epub 2008 Nov 14.
2
Mismatch repair modulation of MutY activity drives Bacillus subtilis stationary-phase mutagenesis.
J Bacteriol. 2011 Jan;193(1):236-45. doi: 10.1128/JB.00940-10. Epub 2010 Oct 22.
7
Role of Bacillus subtilis error prevention oxidized guanine system in counteracting hexavalent chromium-promoted oxidative DNA damage.
Appl Environ Microbiol. 2014 Sep;80(17):5493-502. doi: 10.1128/AEM.01665-14. Epub 2014 Jun 27.
8
The K-State Promotes Stationary-Phase Mutagenesis via Oxidative Damage.
Genes (Basel). 2020 Feb 11;11(2):190. doi: 10.3390/genes11020190.
9
Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis.
J Bacteriol. 2017 Jan 30;199(4). doi: 10.1128/JB.00715-16. Print 2017 Feb 15.

引用本文的文献

1
stress-associated mutagenesis and developmental DNA repair.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0015823. doi: 10.1128/mmbr.00158-23. Epub 2024 Mar 29.
2
8-OxoG-Dependent Regulation of Global Protein Responses Leads to Mutagenesis and Stress Survival in .
Antioxidants (Basel). 2024 Mar 8;13(3):332. doi: 10.3390/antiox13030332.
3
Non-B DNA-Forming Motifs Promote Mfd-Dependent Stationary-Phase Mutagenesis in .
Microorganisms. 2021 Jun 12;9(6):1284. doi: 10.3390/microorganisms9061284.
9
Implementation of a loss-of-function system to determine growth and stress-associated mutagenesis in Bacillus subtilis.
PLoS One. 2017 Jul 11;12(7):e0179625. doi: 10.1371/journal.pone.0179625. eCollection 2017.

本文引用的文献

1
The distribution of the numbers of mutants in bacterial populations.
J Genet. 1949 Dec;49(3):264-85. doi: 10.1007/BF02986080.
2
Stationary phase mutagenesis in B. subtilis: a paradigm to study genetic diversity programs in cells under stress.
Crit Rev Biochem Mol Biol. 2007 Sep-Oct;42(5):327-39. doi: 10.1080/10409230701597717.
3
Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida.
J Bacteriol. 2007 Aug;189(15):5504-14. doi: 10.1128/JB.00518-07. Epub 2007 Jun 1.
4
Physical and functional interactions between Escherichia coli MutY glycosylase and mismatch repair protein MutS.
J Bacteriol. 2007 Feb;189(3):902-10. doi: 10.1128/JB.01513-06. Epub 2006 Nov 17.
5
Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis.
J Bacteriol. 2006 Nov;188(21):7512-20. doi: 10.1128/JB.00980-06. Epub 2006 Sep 1.
6
YtkD and MutT protect vegetative cells but not spores of Bacillus subtilis from oxidative stress.
J Bacteriol. 2006 Mar;188(6):2285-9. doi: 10.1128/JB.188.6.2285-2289.2006.
7
Roles of E. coli double-strand-break-repair proteins in stress-induced mutation.
DNA Repair (Amst). 2006 Feb 3;5(2):258-73. doi: 10.1016/j.dnarep.2005.10.006. Epub 2005 Nov 28.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验