Suppr超能文献

枯草芽孢杆菌错误预防氧化鸟嘌呤系统在对抗六价铬促进的氧化性DNA损伤中的作用

Role of Bacillus subtilis error prevention oxidized guanine system in counteracting hexavalent chromium-promoted oxidative DNA damage.

作者信息

Santos-Escobar Fernando, Gutiérrez-Corona J Félix, Pedraza-Reyes Mario

机构信息

Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, México.

Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, México

出版信息

Appl Environ Microbiol. 2014 Sep;80(17):5493-502. doi: 10.1128/AEM.01665-14. Epub 2014 Jun 27.

Abstract

Chromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report that Bacillus subtilis cells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficient B. subtilis strain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes of B. subtilis cells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system.

摘要

铬污染可能对土壤细菌群落有害,破坏地球上生命所必需的碳和氮循环。有人提出,细胞内六价铬[Cr(VI)]还原为三价铬[Cr(III)]可能通过一种涉及活性氧(ROS)诱导的DNA损伤的机制导致细菌死亡;本研究对这一现象的分子基础进行了调查。在此,我们报告,缺乏功能性防止鸟嘌呤氧化(GO)系统的枯草芽孢杆菌细胞比野生型(WT)菌株的细胞对Cr(VI)处理显著更敏感,这表明DNA的氧化损伤与该含氧阴离子的有害作用有关。与这一推测一致,Cr(VI)显著增加了GO缺陷型枯草芽孢杆菌菌株中的ROS浓度并诱导了诱变。对经Cr(VI)处理的WT和ΔGO突变株的染色体DNA进行碱性凝胶电泳(AGE)分析表明,ΔGO菌株的DNA更容易受到DNA糖基化酶Fpg的攻击,这表明铬的遗传毒性与7,8-二氢-8-氧代脱氧鸟苷(8-氧代-G)损伤有关。支持这一观点的是,特异性单克隆抗体检测到经Cr(VI)处理的枯草芽孢杆菌细胞染色体中8-氧代-G损伤的积累。我们得出结论,Cr(VI)通过一种涉及DNA自由基氧攻击、产生8-氧代-G的机制促进枯草芽孢杆菌的诱变和细胞死亡,并且这种作用被GO预防和修复系统所抵消。

相似文献

1
Role of Bacillus subtilis error prevention oxidized guanine system in counteracting hexavalent chromium-promoted oxidative DNA damage.
Appl Environ Microbiol. 2014 Sep;80(17):5493-502. doi: 10.1128/AEM.01665-14. Epub 2014 Jun 27.
3
Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis.
J Bacteriol. 2009 Jan;191(2):506-13. doi: 10.1128/JB.01210-08. Epub 2008 Nov 14.
4
A comparison of the in vitro genotoxicity of tri- and hexavalent chromium.
Mutat Res. 2000 Aug 21;469(1):135-45. doi: 10.1016/s1383-5718(00)00065-6.
6
Chromium genotoxicity: A double-edged sword.
Chem Biol Interact. 2010 Nov 5;188(2):276-88. doi: 10.1016/j.cbi.2010.04.018. Epub 2010 Apr 27.
8
Is Cr(III) toxic to bacteria: toxicity studies using Bacillus subtilis and Escherichia coli as model organism.
Arch Microbiol. 2018 Apr;200(3):453-462. doi: 10.1007/s00203-017-1444-4. Epub 2017 Nov 30.

引用本文的文献

1
stress-associated mutagenesis and developmental DNA repair.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0015823. doi: 10.1128/mmbr.00158-23. Epub 2024 Mar 29.
2
8-OxoG-Dependent Regulation of Global Protein Responses Leads to Mutagenesis and Stress Survival in .
Antioxidants (Basel). 2024 Mar 8;13(3):332. doi: 10.3390/antiox13030332.
4
The guanidine thiocyanate-high EDTA method for total microbial RNA extraction from severely heavy metal-contaminated soils.
Microb Biotechnol. 2021 Mar;14(2):465-478. doi: 10.1111/1751-7915.13615. Epub 2020 Jun 23.

本文引用的文献

2
Contributions of individual σB-dependent general stress genes to oxidative stress resistance of Bacillus subtilis.
J Bacteriol. 2012 Jul;194(14):3601-10. doi: 10.1128/JB.00528-12. Epub 2012 May 11.
3
Y-family DNA polymerases and their role in tolerance of cellular DNA damage.
Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):141-52. doi: 10.1038/nrm3289.
4
Chromium-induced genotoxicity and interference in human lymphoblastoid cell (TK6) repair processes.
J Toxicol Environ Health A. 2011;74(15-16):1030-9. doi: 10.1080/15287394.2011.582282.
5
Molecular targets of oxidative stress.
Biochem J. 2011 Mar 1;434(2):201-10. doi: 10.1042/BJ20101695.
7
Short-chain chromate ion transporter proteins from Bacillus subtilis confer chromate resistance in Escherichia coli.
J Bacteriol. 2009 Sep;191(17):5441-5. doi: 10.1128/JB.00625-09. Epub 2009 Jul 6.
8
Management of oxidative stress in Bacillus.
Annu Rev Microbiol. 2009;63:575-97. doi: 10.1146/annurev.micro.091208.073241.
9
Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis.
J Bacteriol. 2009 Jan;191(2):506-13. doi: 10.1128/JB.01210-08. Epub 2008 Nov 14.
10
Ecology and genomics of Bacillus subtilis.
Trends Microbiol. 2008 Jun;16(6):269-75. doi: 10.1016/j.tim.2008.03.004. Epub 2008 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验